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a b s t r a c t

The rapid diffusion of information is critical to combat the extreme levels of uncertainty and complexity
that surround disaster relief operations. As a means of gathering and sharing information, humanitarian
organizations are becoming increasingly reliant on social media platforms based on the Internet. In this
paper, we present a field study that examines how effectively information diffuses through social media
networks embedded in these platforms. Using a large dataset from Twitter during Hurricane Sandy, we
first applied Information Diffusion Theory to characterize diffusion rates. Then, we empirically examined
the impact of key elements on information propagation rates on social media. Our results revealed that
internal diffusion through social media networks advances at a significantly higher speed than infor-
mation in these networks coming from external sources. This finding is important because it suggests
that social media networks are effective at passing information along during humanitarian crises that
require urgent information diffusion. Our results also indicate that dissemination rates depend on the
influence of those who originate the information. Moreover, they suggest that information posted earlier
during a disaster exhibits a significantly higher speed of diffusion than information that is introduced
later during more eventful stages in the disaster. This is because, over time, participation in the diffusion
of information declines as more and more communications compete for attention among users.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Themanagement of humanitarian operations during disasters is
often highly complex due to the extreme uncertainty and diversity
of stakeholders involved in these crises (VanWassenhove, 2006). In
such instances, gathering and sharing timely information regarding
infrastructure, supply of resources, and needs is critical to develop
an understanding of existing conditions and coordinate an effective
response (Pettit and Beresford, 2009). To that end, researchers have
stressed the importance of rapid information diffusion for hu-
manitarian organizations (HOs) to gather intelligence about con-
ditions in affected communities (Oloruntoba and Gray, 2006) and
for HOs to distribute information among stakeholders in order to
foster collaboration (Altay and Pal, 2014).

Internet-based social media hosted on platforms like Twitter or
Facebook may help facilitate information diffusion because they
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provide the means through which stakeholders can upload and
share information with others in real-time and at virtually no cost.
Many HOs have recognized the value of social media platforms and
have started using them to access and share information from
various sources. This includes data from informants with first-hand
knowledge of what is occurring in affected areas (Gao et al., 2011),
and recently, HOs have aggregated these data to create crisis maps
showing landmarks like damaged infrastructure and shelters
(Meier, 2012). HOs have also used social media to share capacity
levels and resource availability to enhance coordination among
stakeholders (Sarcevic et al., 2012).

Despite these experiences, and calls by experts for additional
research on the use of social media for humanitarian operations
(e.g., Holguín-Veras et al., 2012; Kumar and Havey, 2013), the
literature on this subject is still at an embryonic stage. Most of this
work has focused on descriptions and characterizations of social
media responses to humanitarian crises (e.g., Kaigo, 2012; Kogan
et al., 2015) and has yet to rigorously consider the dynamics of
information dissemination during these events and their influence
on humanitarian operations.
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Our paper addresses this deficiency by analyzing diffusion dy-
namics of information in social media from a disaster case. To that
end, we follow Ellison et al. (2007) and focus on a network repre-
sentation of social media platforms on the Internet in which users
can forge connections and share information directly with each
other, as well as indirectly through other users. These connections
will form social media networks in which information produced by
a user (i.e., an originator) will create cascades when those con-
nected directly to her receive it and, in turn, share it with those
with whom they are connected. These information cascades will
continue to spread as long as more users join these cascades by
sharing the information they receive with those connected to them.

To address this objective, we develop and test a set of theoretical
propositions regarding the role played by three key determinants of
information diffusion dynamics in social media networks. Although
past work has discussed the importance of these determinants in
the crisis informatics literature (e.g., Ringel Morris et al., 2012;
Starbird and Palen, 2010; Vieweg et al., 2010), their impact on in-
formation diffusion across social networks remains undetermined.
The first determinant focuses on the influence that information
cascade originators have in these networks as a function of their
social connections. The second one focuses on the type of content
being shared in these networks and whether it contributes to
improving situational awareness during a crisis. The third deter-
minant corresponds to the timing in the introduction of information
in these networks with respect to the progression of disaster
events. Since the propositions focus on characteristics of cascades,
the unit of analysis in our study is a cascade.

Our results show that information can spread faster when it
originates from users that are influential in these networks. They
also indicate that the timing when information is initially posted by
an originator relative to a disaster's development of events will
impact the information's rate of diffusion across social media net-
works. Information that is originally posted later, as a disaster in-
tensifies, will spread at a lower rate than information that is posted
at earlier stages of the disaster because, over time, participation in
the diffusion of information cascades declines as more cascades
compete for attention among users. This phenomenon underscores
a paradox in which as a disaster's effects build up, there will be
more cascades contributed by originators, but the information in
those cascades will spread more slowly.

In the next section, we expand on theoretical explanations for
the diffusion of information on social media networks and develop
the propositions that guided our study. In Section 3, we detail how
we collected the data and operationalized the variables to test the
propositions. We then present the empirical model and the results
pertaining to the evaluation of the propositions in Section 4, fol-
lowed by a discussion of the results, implications, and conclusions
in Section 5.

2. Information diffusion on social media networks:
background, theory, and propositions

Research based on Information Diffusion Theory has relied on
different types of models of adoption to explain the dynamics of
information cascades' diffusion in network settings. Two of the
seminal models are the Independent Cascade (IC) model developed
by Goldenberg et al. (2001) and Kempe et al. (2003) and the Linear
Threshold (LT) model developed by Granovetter (1978). These
models assume each member contributes monotonically to the
diffusion of information (i.e., there is no dis-adoption or forgetting
of the information). In these models, information diffusion pro-
ceeds iteratively over time starting from a set of members that
contribute information to be subsequently distributed by other
members across the network (Guille et al., 2013). IC and LT models
also account for information diffusion due to a member receiving
information from sources external to the network or internally
from those informed participants that are adjacent to her in the
network (Myers et al., 2012).

IC and LT models, however, differ from each other in several
aspects. IC models assume that an informed member has one
chance at a time of independently sharing information with one
uninformed member adjacent to her in the network (Kempe et al.,
2003). Thus, at any point in time, an uninformed member has a
likelihood, q, of becoming aware of the information when at least
one of her neighbors in the network has already become aware of
the information. But, in many versions of the IC model (Goldenberg
et al., 2001), there is also a probability, p, that the individual will
become aware of this information from external sources. High
values for q and p will denote a high information diffusion rate
throughout the network due to the internal influence of network
connections or influence of sources external to the network,
respectively (Guille et al., 2013).

In LT models, it is assumed that a participant will share infor-
mationwith her uninformed neighbors in the network if, over time,
the number of informed members adjacent to her in the network
exceeds her own influence threshold (Granovetter,1978). The lower
this threshold across the network, the faster the participant will
share information with her uninformed neighbors and the faster
informationwill diffuse internally throughout the network. In prior
work, this threshold is denoted by f (Watts and Dodds, 2007). In
our paper, we operationalize this threshold by setting f ¼ 1 � q.
This allows us to maintain a relationship consistency with the IC
model where high values of q indicate faster diffusion, and low
values of q indicate slower diffusion. In some prior work, the q
parameter is fixed for all individuals, while in other contexts it is
chosen from a distribution for each individual (Watts, 2002).
Traditionally, the LT model has not incorporated a p parameter,
instead relying on the initial seeds of the network to propagate the
information (Kempe et al., 2003; Watts and Dodds, 2007), but a p
parameter playing the same role that it does in the IC model can be
added to this model instead of an initial seed (Dodds and Watts,
2005).

Though previous work has created a generalized model that
incorporates both the IC and LT models (Dodds and Watts, 2005),
we developed a framework that allows for versions of both the IC
and LT models to be described using the same two parameters of p
and q. To that end, we modeled the user decision process in the
following sequential steps:

(1) Effect of p: Independent of the adoption model (LT or IC),
each agent who has not yet adopted the information adopts
the information with probability p due to discovering the
information from a source of information diffusion outside
the network structure.

(2) Effect of q: Depending on the adoption model, users take
different actions.

a. q in the LT model: Each user who has not adopted ob-

serves the number of neighbors who have adopted
divided by the total number of neighbors they have. If that
ratio exceeds f, the focal user adopts the information
(Watts and Dodds, 2007).

b. q in the IC model: Each user who adopted information in
the most recent previous time step has q probability of
transmitting the information to any neighbor who has not
adopted the information (Goldenberg et al., 2001).
Though each of these models has found success in analyzing
diffusion processes (e.g., Goldenberg et al., 2001; Guille et al., 2013;
Rand et al., 2015;Watts and Dodds, 2007), it is not obvious whether
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both models can be used jointly in studying information diffusion
on social media networks in the same context. As part of our
contribution to the literature, we will first examine how IC and LT
models explain these cascades' diffusion dynamics within the same
context. Then, we will use this analysis to focus our line of inquiry
on the effects of the three diffusion determinants we introduced in
Section 1. We will expand on these determinants' effects below.

2.1. The effect of influential originators on the diffusion of cascades

The diffusion of an information cascade will depend on the level
of influence that the cascade's originator carries in the social
network. An originator's influence is particularly relevant to the
context of cascades in social media networks during humanitarian
crises since users previously reported having significant concerns
about the credibility of disaster information they received through
social media (Ringel Morris et al., 2012). While influence can be
assessed in a number of different ways, prior results from infor-
mation diffusion models concentrate on influence measured by a
user's number of social connections and suggest that users with
large network audiences are perceived to have superior credibility
(Bhattacharya and Ram, 2012). These perceptions will allay con-
cerns about trustworthiness and induce individuals to conform to
cascades launched by influential originators (Goldenberg et al.,
2009). Based on this evidence, we expect that users will be in-
clined to join cascades originated by network members with
extensive influence, and as a result, these cascades will exhibit
greater rates of internal diffusion.

Moreover, research has relied on the principle that influential
cascade originators usually have numerous social connections that
will expose large audiences to their cascades soon after they are
launched (Kempe et al., 2003). This implies that if a cascade's
originator is well-connected, the cascade will diffuse rapidly
because a wider audience will be exposed early on to the cascade.
We anticipate that this principle will also apply in the context of
information diffusion in social media networks during a disaster.
Hence, we conjecture that an information cascade's diffusion may
experience a surge soon after a highly influential user exposes the
cascade's information to her network links. This will contribute to
the cascade's overall rate of diffusion throughout the social media
network. Proposition 1 summarizes this argument for our setting.

Proposition 1. In the context of cascades carrying disaster-related
information throughout social media networks, the influence of a
cascade’s originator contributes positively to the cascade’s speed of
diffusion.
2.2. The effect of content promoting situational awareness on the
diffusion of cascades

Research shows that diffusion rates will increase if network
members perceive that cascades' contents are informational and
that sharing these contents will be helpful to others (Rogers-Pettite
and Herrmann, 2015). Based on this evidence, we argue that, during
humanitarian crises, network members are more inclined to
participate in cascades carrying informational content that is seen
as useful to disaster relief operations. For many of these members,
the decision to join cascades conveying informational content
related to disaster relief will follow altruistic and emotional moti-
vations to help victims. In joining these cascades, these members
anticipate no material gains. Instead, they look to obtain rewards
resulting from their cooperation with other cascade participants
and from offering support to others in need (Fowler and Christakis,
2010).

In a humanitarian context, these information cascades will
convey content that will heighten situational awareness. Situational
awareness, in itself, is defined as a complete and coherent under-
standing of what is going on during emergencies, and it is gained
from information that helps to assess the situation at hand (Sarter
and Woods, 1991; Vieweg et al., 2010). In humanitarian operations,
information supporting situational awareness is vital because de-
cision parameters are highly dynamic (Holguín-Veras et al., 2012).
Hence, situational awareness is required to make decisions that are
well-informed and reflective of current events.

Given the value of situational awareness, we expect that
network members will have a greater disposition to join cascades
that carry information that could improve situational awareness.
Our expectation follows evidence showing that cascades with in-
formation that improves situational awareness exhibit greater
participation among social media users (Vieweg et al., 2010). Thus,
messages meant to improve situational awareness during a crisis
are likely to strengthen the diffusion of information cascades across
social networks. Proposition 2 formalizes this argument.

Proposition 2. In the context of cascades carrying disaster-related
information throughout social media networks, speed of diffusion
will be higher for cascades carrying information that heightens
situational awareness than for cascades carrying other types of
information.

2.3. The effect of timing in the launch of cascades on the diffusion of
cascades

Past work on information diffusion has underscored the role
played by temporal patterns in the dissemination of information
across networks. As part of this body of work, Boyd et al. (2010)
identified a preference by participants in social media networks
to share time sensitive information with others. This is particularly
relevant in a humanitarian context, in which participants will be
motivated to share urgent information that will help address
directly their own needs and those of others in the network.

Leskovec et al. (2009) argued that the level of motivation among
network participants to share time-sensitive information will
contribute to the likelihood of certain topics gaining initial traction
among network participants and eventually forming a cascade.
These topics, for example, may comprise the development of urgent
news events during a humanitarian crisis. At an early stage during a
disaster, cascades addressing such topics will spread quickly as
more participants imitate one another in sharing information. But
over time, the rate of participation in the diffusion of cascades will
decline as newer topics compete with older ones for attention. As a
result, the diffusion of new cascades is likely to become increasingly
difficult, regardless of the urgency embedded in an information
cascade. Cascades that are launched at later stages during the
course of a crisis are therefore expected to diffuse at a lower rate
than cascades launched at earlier stages. That is, the diffusion of
information cascades on social media networks will decline as a
disaster unfolds. Proposition 3 formalizes this argument.

Proposition 3. In the context of cascades carrying disaster-related
information throughout social media networks, the speed of diffu-
sion will be lower for cascades that are launched later than for cas-
cades launched earlier during the progression of a disaster event.
3. Research methodology

3.1. Context: Twitter and Hurricane Sandy

We focused on Twitter to test our propositions. Social networks
on Twitter are based on directional links between users. On Twitter,



1 The process of cleaning and categorizing the cascades took approximately 45 h
to complete.

2 This information may be missing from the data because privacy settings chosen
by the originators did not allow the Search API to access this information or because
the original tweet was posted before the start of the data collection.
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a user can follow, or track, the messages (or “tweets”) of another
user or be followed by other users (called “followers”). Users can
receive the tweets of those they follow and broadcast all of their
own tweets to their followers. Twitter also gives a user the ability to
“retweet” original tweets or other retweets posted by users that she
follows in order to share these messages with her own followers. A
user's retweets preserve the contents of the original message, and
these retweets may be shared in turn by the user's own followers,
who may or may not be a part of the network of the user who
uploaded the original tweet.

Our study focused on Twitter data associated with Hurricane
Sandy, a disaster for which Twitter usage has received some
research attention (e.g., Rand et al., 2015). Hurricane Sandy is
considered to be the largest Atlantic hurricane on record in the
United States (U.S.). It began as a tropical storm in the Caribbean in
October of 2012, grew into a Category 3 hurricane at its peak, and
impacted the Eastern U.S. We determined Hurricane Sandy to be an
appropriate disaster case for our study for two reasons. First, the
hurricane's major effects were felt in a densely populated, highly
developed area. Because of the hurricane's magnitude and Twitter's
popularity in this area, a large volume of tweets were posted in
relation to this event, creating a rich dataset for empirical analyses.
Second, as the main effects of Hurricane Sandy were felt in the U.S.,
tweets were mostly sent in English. This eliminated the need for
translation to address our research objectives.

3.2. Data collection

Our data contain original tweets and retweets posted from
October 26 until October 30, 2012. These dates correspond to the
periods before, during, and after Hurricane Sandy effects were
experienced in the U.S and overlap with the stages when prepa-
ration and response activities to the hurricane occurred. Prepara-
tion and response stages are usually the most relevant for
humanitarian operations in many disasters as high levels of un-
certainty and volatility in conditions on the ground are pervasive at
these times (Van Wassenhove, 2006).

The collected data include the actual contents of the tweets
and retweets, information about the users responsible for these
posts, and the date and time, to the second, when each of the
posts appeared on Twitter. The data were gathered in real-time
using Twitter's Search API, an interface through which one can
program queries to collect tweets and retweets posted within the
past seven days. Twitter limits the amount of data that can be
downloaded per IP address using the Search API. To overcome this
limit, a script using the Search API was run constantly on ten
different machines with a rule that would pull tweets and
retweets containing the keywords “Sandy,” “hurricane,” “storm,”
and/or “superstorm”. Based on the volume of data downloaded,
we were confident that the Search API extracted a high percentage
of the tweets and retweets that contained our search keywords
during our data collection period. Nevertheless, we decided to
evaluate the completeness of the data gathered through the
Search API by comparing it against a sample we acquired from
Gnip, a Twitter subsidiary with access to the entire Twitter fire-
hose (i.e., all activity ever posted on Twitter). To draw the Gnip
sample, we used identical keywords and date ranges to those
specified for the Search API sample. Our comparison demonstrated
that the Search API only missed 7.81% of the messages in the Gnip
dataset. This suggests that our sample contains a vast majority of
the tweets and retweets posted during Hurricane Sandy and with
the selected keywords.

Subsequently, we used a program to separate the original tweets
from the retweets that the Search API extracted. We manually
reviewed all of the original tweets and filtered out those that we
deemed irrelevant along with their retweets. Although they con-
tained the chosen keywords, irrelevant tweets included jokes, song
lyrics, emotional responses, and discussions of topics unrelated to
Hurricane Sandy. Please refer to Table 1 for more detail on irrele-
vant tweets. After removing the irrelevant messages, we were left
with 18.27% of the original tweets in the sample along with their
retweets.1 In total, these tweets and retweets corresponded to
333,968 messages.

Because our propositions dealt with information cascade effects,
the unit of analysis for our study is the cascade. In view of this, we
organized the tweets and retweets in the dataset into cascades. We
followed the lead of authors who have previously conceptualized
information cascades in Twitter as retweet chains (e.g., Galuba
et al., 2010; Lerman and Ghosh, 2010). Each original tweet repre-
sented the start of a cascade, and retweets by additional users
signaled participation in a cascade. In Twitter, the text in all
retweets is usually identical to the text in the original tweet that
launched the cascade since Twitter makes retweets possible
through the push of a single button. Retweets are also marked at
the beginning by “RT@username,” followed by the original tweet's
text. The username following “RT@” identifies the user that posted
the original tweet and launched the cascade.

Based on these attributes, we compiled cascades in our data
by identifying and grouping retweets that shared the same text
and embedded originator usernames. Then, to ensure that each
group of matching retweets constituted an actual cascade and
not background conversations among select users, we confirmed
that each cascade consisted of at least ten retweets issued at
varying intervals. This process generated 5683 cascades. We
chose a threshold of ten retweets because cascades on Twitter
usually do not require many retweets to develop (Lerman and
Ghosh, 2010).

We then developed a program to examine in detail the original
tweets that began each cascade. Through this program, we isolated
the username embedded in the beginning of each retweet's
“RT@username” and separated the original tweet's text that fol-
lowed. Then, the program searched through the dataset and pulled
each original tweet with the matching username and content. In
this process, we found that 249 cascades (comprised of 19,558
retweets) could not bematched to their original tweet because they
had missing information about the originating users.2 This pre-
vented us from identifying the time when each of these cascades
started, and therefore, we were unable to examine their diffusion.
Although this left us with no option but to drop these cascades from
our sample, the removal of these cascades had a negligible impact
on our results since they constituted only 4.3% of our observations.
After we filtered these cascades, we were left with a final sample of
311,429 retweets forming 5434 cascades to evaluate our proposi-
tions. Table 2 shows the distribution of the cascades across six
content categories.
3.3. Operational measures

In this section, we expand on the operationalization of the
variables introduced in the propositions. Moreover, we introduce a
set of control variables to be used as part of the empirical testing of
these propositions. Table 3 lists the variables in the propositions
and the control variables along with their operationalization.



Table 1
Irrelevant tweets.

Irrelevant category Example tweet

Emotional response “actually really scared of the hurricane coming:(“
Joke “Hurricane Sandy sounds like a delicious mixed drink.”
Not related to Sandy “Yay!!(: hanging out with my bestfriend @strong_sandy”
Opinion “I get the feeling this hurricane in gonna be just like irene and barley [sic] hit us..”
Song lyric “The voice that calmed the sea would call out through the rain and calm the storm in me … -Casting Crowns. I love this song! #whoami”
Vague forecast “Sandy is coming”

Table 2
Breakdown of cascade categoriesa.

Category Count of cascades Description Sample retweet

Advisories 2024 Transportation shutdowns, evacuation warnings, survival/
safety tips, and updates on hurricane intensity/trajectory

RT @Timcast: Reports that all NYC bridges will be closing at
7pmEST via @NYScanner #Sandy #Frankenstorm

Business 445 Reports of business-related shutdowns and forecasts of
economic impacts

RT @Reuters_Biz: Stock bond markets shut on Tuesday may
reopen Wednesday http://t.co/JL6fEHea

Declarations 141 Declarations of emergencies by states RT @USNationalGuard: So far governors in MD VA NY DC PA
CT NC NJ DE MA and VT have declared states of emergency
ahead of #Hurricane #Sandy.

Forecasts 640 Forecasts of weather and hurricane effects RT @twc_hurricane: BREAKING: TWCs experts now expect
localized wind gusts of 90 þ mph near the coast of NJ NYC
and Long Island later today. #Sandy

Humanitarian 246 Information related to shelters, relief efforts, and
deployment of aid

RT @femaregion2: #Sandy Search for open shelters by
texting: SHELTER þ a zip code to 43362 (4FEMA). Ex:
Shelter 01234 (std rates apply)

Reports 1938 Status updates of weather, damage, outages, etc. RT @News12LI: As of 10:32 a.m. LIPA is reporting 15695
outages across Long Island. #Sandy

a Adapted from Olteanu et al. (2014) and Vieweg et al. (2010).

Table 3
Variable operationalization.

Construct Variable label Operationalization

Information cascade's diffusion speed DIFFUSION Ratio of q/p values obtained from the IC model
Cascade originator's influence INFLUENCE Number of users following the cascade originator (at the time of cascade launch)
Cascade content's contribution to situational awareness AWARENESS Dummy variable coded 1 if the cascade content contributed to situational awareness;

0 otherwise
Lateness in the launch of the cascade during the disaster LATENESS Lag in the launch of the cascade relative to the start of the data collection (measured in

hours)
Incidence of cascade boosts by originator BOOST Dummy variable coded 1 if originator boosted the cascade; 0 otherwise
Misleading cascade FALSE Dummy variable coded 1 if the cascade content was misleading; 0 otherwise
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3.3.1. Dependent variable
To measure the cascades' diffusion speed on Twitter's network,

we followed Rand's et al. (2015) approach and ran an agent-based
model (ABM) to evaluate how well the IC and LT models we
introduced in Section 2 represented the cascade data. This gener-
ated an overall adoption rate of information at discrete time steps.
ABM offers a robust understanding of information diffusion on
social networks since it represents not only the properties of the
individual agents but also their communication channels via local
network connections. Rand and Rust (2011) identify up to six
properties of a system thatmake it useful tomodel using ABM: (1) a
medium number of agents, (2) local and potentially complex in-
teractions among agents, (3) agents' heterogeneity, (4) rich envi-
ronments, (5) temporal aspects, and (6) agents' adaptability.
Information diffusion on social media features all six of these
properties to an extent, making ABM a suitable method for our
study. Please refer to Part I of the electronic appendix that ac-
companies this paper for a more detailed discussion of the appro-
priateness of ABM. The ABM was constructed, verified, and
validated following the guidelines of Rand and Rust (2011). Parts II
through IV of the electronic appendix contain supplemental infor-
mation of model construction, verification, and validation beyond
the details given below, and Part VI shows the natural language
version of the code used to create the ABM.
There were two basic entities in the ABM: (1) a Twitter user

interested in receiving and transmitting information and (2) the
relationship between each pair of users in a cascade, i.e., a social tie
or a link. Ties between users enabled the transmission of infor-
mation across each cascade. In Twitter, two users are connected to
each other if one of the users follows the other and/or vice versa.
Thus, the agents in the ABM possessed a set of links that corre-
sponded to the social links of each user to other users based on
their “following” relationships. We patterned these relationships
against the links observed across a sample of 4076 participants in
the longest cascade in our dataset. Using Twitter's RESTful API, we
identified the users followed by each cascade participant at the
time of Hurricane Sandy. This yielded a total of 1,322,814 links, of
which 3315 served to cascade the information by being direct
connections between users who were part of the cascade. Because
of the rate limits on Twitter's RESTful API, it would have taken a
prohibitive amount of time to pull all of the networks for each
cascade. Therefore, we used the network for the longest cascade as
the pattern for all of the other cascades we examined. While this
decision simplified the modeling process, it is not a major limita-
tion since Twitter exhibits scale-free properties, meaning that
subnetworks are similar to their corresponding larger networks

http://t.co/JL6fEHea


Table 4
Descriptive statistics for MAPE values.

Model Median Mean SD Min Max

IC 13.36 22.91 94.58 0.61 5611.07
LT 12.97 21.89 86.26 1.08 4821.76

3 In the IC model, q represents a probability of internal influence, i.e., adoption
due to internal influence is q multiplied by the fraction of neighbors who have
adopted. Therefore, q/p describes the difference in spreads due to internal influence
vs. external influence. However, in the LT model, q is a measure of how low the
threshold to adoption is due to internal influence. This is different than a proba-
bility of adoption. Hence, q in the LT model is not directly comparable to p in the LT
model since p is a direct measure of the probability of adoption due to external
influence. This makes it difficult to make direct claims about the rate of internal vs.
external adoption in the LT model based on these parameters. Nevertheless, since
we developed the ABM under both IC and LT models, the ABM could serve to
evaluate which rules cause the agents to adopt, and, from that, count up the
number of agents that adopt due to internal influence and external influence in the
LT model and compare those numbers to gauge diffusion speed indirectly.
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(Kwak et al., 2010).
Since the main observation in the ABMwas the overall adoption

of information at each time step for each cascade, agents had a
property that specified whether or not they had adopted new in-
formation. By adoption of new information, we mean the joining of
a cascade by retweeting. In addition, agents had both a coefficient
of external influence (p) and a coefficient of internal influence (q)
that controlled the rate of adoption of a new piece of information in
each cascade following external or internal stimuli, respectively. At
the beginning of the ABM, all agents started in an “un-adopted”
state, and a directed social network linking the agents was formed
based on the empirical Twitter networks described above. Then, at
each time step, any agents that still had not adopted the informa-
tion decided whether to adopt the information based on p, q, and
the state of their neighbors in the network. Agents followed the
unified model discussed in Section 2 to make these decisions. The
agents first chose whether to adopt based on external influence. To
do this, they drew a random number from the uniform distribution
of [0,1). If that number was less than p, they then adopted that
information. This decision rule for external influence was identical
regardless of whether the LT or IC models were considered.

The role of internal influence of network links was subse-
quently considered. In the LT model, each agent counted the
number of neighbors that had adopted the information and
divided this sum by the total number of neighbors. The agent then
compared this number to f ¼ 1 � q, and if the ratio was higher
than f they proceeded to adopt the information. In the IC model,
each agent who adopted the information in the most recent time
step transmitted the information to all of its neighbors who had
not adopted. These uninformed agents drew a random number
from the uniform distribution of [0,1), and if the number was less
than q, they adopted the information. After all of the non-adopting
agents had considered whether or not to adopt according to the
rules described above, statistics on the number of adoptions that
occurred during that time step were calculated. The model then
iterated again until every agent in the network had adopted the
information. We calibrated our model so that a time step was
roughly one minute. This enabled a seamless comparison to the
observed data, which was also set in a resolution of one-minute
increments.

The ABM provided observations for each cascade on the adop-
tion of information at each time step for the IC and the LT models.
We then compared this information to the empirical data to
determine for each adoption model and each cascade which values
of p and q best matched the empirical data. To complete this task,
we used a simulated annealing (SA) approach. This method works
by generating iterative values of p and q and measuring the per-
formance of the model between the time series of the model data
and the observed data for each cascade until identifying the
parameter values for p and q that optimize this performance. We
chose to use SA since a full search of the parameter space was
precluded by the computational cost, and SA provides a robust way
to search the space quickly for a set of parameters that minimizes
errors. For technical details on the number of runs and imple-
mentation of the SA algorithm, please refer to Part V of the elec-
tronic appendix.

To estimate the performance measure from each model run for
each cascade network, we obtained values for Y(t), the number of
agents in the network who had adopted the information at each
time step, t. Next, we compared Y(t) to the actual number of
adopters per time step from our empirical data, Empirical(t), using
the Mean Absolute Percentage Error (MAPE). As Equation (1)
shows, the MAPE is equal to the absolute difference between the
empirical value of information adoption observed at time step, t,
throughout the duration of the cascade and the ABM's value at that
same time step, divided by the empirical value at time step t and
averaged over all values (n).

MAPE ¼ 100� 1
n

Xn

t¼0

jEmpiricalðtÞ � YðtÞj
EmpiricalðtÞ (1)

We then averaged the MAPE across k runs. For a sample of the
cascades, we observed that the average MAPE did not change
markedly with more than ten runs for a given parameter setting.
Thus, we chose to use ten model runs to provide an adequate es-
timate of the underlying adoption patterns for a given cascade
network and a given set of parameters. It was this average MAPE
value over ten runs that was then used by the SA approach to
optimize the parameter values.

Table 4 provides a distribution of the MAPE values across all the
cascades for the IC and LTmodels. A comparison of theMAPE values
for p and q across the cascades revealed that the MAPE values for p
and q were consistently low across the IC and the LT models and
similar to values identified for this metric in previous studies (Rand
et al., 2015). Since both the IC and LT models performed well, we
chose to focus on the IC model to operationalize information cas-
cades' diffusion speed as our dependent variable (henceforth
labeled as DIFFUSION). This is because the IC model allowed for a
more direct measurement of DIFFUSION as the ratio of q/p values
obtained from the model's output.3 By operationalizing the
dependent variable as q/p, we were able to account for diffusion
forces due to sources internal and external to the networks un-
derlying the cascades.

3.3.2. Determinants
We are interested in investigating three determinants: (1) the

cascade originator's influence, (2) the cascade content's contribu-
tion to improving situational awareness, and (3) the timing of the
launching of the cascade. To measure a cascade originator's influ-
ence, we followed Cha et al. (2010), who explained that an agent is
influential when it acts as an information channel to a large audi-
ence. This is consistent with opinion leadership models that sup-
port the notion that individuals are influential when they have a
high number of connections with others (Bonacich, 1972). Thus, we
measured a cascade originator's influence as the number of the
originator's followers on Twitter at the time the cascade was
launched (INFLUENCE).

The second explanatory variable serves to identify those cas-
cades that spread information related to situational awareness. To
identify whether a cascade included this type of content, we
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created a dummy variable using the categorization scheme intro-
duced in Section 3.2. This dummy (AWARENESS) equals 1 if the
cascade belonged to advisories, humanitarian, or reports categories
since, as detailed in Table 2, all dealt with information about safety,
shelters, or the functional state of the affected areas. Otherwise,
AWARENESS equals 0. We validated this operationalization by
having four raters independently classify whether a randomly
sampled set of 100 cascades pertained to situational awareness as
defined in this study. We then checked the inter-rater agreement of
our and the raters' classifications using Fleiss' kappa (Fleiss, 1971).
The kappa statistic was equal to 0.68, which indicates substantial
agreement (Landis and Koch, 1977).

Finally, the third explanatory variable captures the timing of
each cascade's launch during the disaster. To that end, wemeasured
the difference in hours between each cascade's launch and the time
when we began our data collection. By calculating these intervals,
we captured how late a cascade was launched during the disaster.
We labeled the variable for this measure as LATENESS.
3.3.3. Control variables
As part of our empirical model, we accounted for instances in

which cascade originators attempted to artificially increase the rate
of diffusion of information in their cascades. Therefore, our first
control variable accounts for instances when users boosted (or
bumpedup) those cascades that they themselves originated in order
to increase the cascades' visibility on Twitter. A user may attempt to
give a cascade that she originated a “boost” by reposting, at least
once, the same tweet that initiated a cascade. However, in doing so,
the originator may contribute to artificially distorting the cascade's
growth pattern and its rate of diffusion.We controlled for this effect
by using a binary indicator (BOOST) that specifiedwhich cascades in
our samplewereboostedby their originators or not.We setBOOST to
1 if a cascade was boosted by its originator or 0 otherwise.

Moreover, we controlled for whether the information conveyed
in a cascade was misleading. Prior studies have documented the
circulation of manufactured information in online social networks
during disasters (e.g., Kaigo, 2012). In our sample, some cascades
contained information that purposefully exaggerated the size of the
hurricane while others conveyed messages designed to convey
outlandish claims about damages caused by the hurricane. Because
such reports can generate a sense of panic among users (Gupta
et al., 2013), they may artificially increase the rate of diffusion of
information in these cascades. We controlled for this effect with a
dummy variable (FALSE) that is set to 1 if the cascade's contents
were false and 0 otherwise.
4. Empirical analysis

We used regression analysis to test the propositions based on
Equation (2). The use of regression analysis enabled us to specify
the rate of diffusion for a cascade, i, as a function of the explanatory
and control variables discussed in Section 3.3 in addition to an error
term, ui.

DIFFUSIONi ¼ b0 þ b1 INFLUENCEi þ b2 AWARENESSi
þ b3 LATENESSi þ b4 BOOSTi þ b5 FALSEi þ ui

(2)

Fig. 1 shows a cumulative distribution of the cascades' origina-
tions over time, and Table 5 lists the descriptive statistics for the
variables in Equation (2). Since the mean for DIFFUSION (37.28) is
statistically higher than 1 (p < 0.01), our data suggest that internal
information diffusion on social media networks advances at an
average rate that significantly exceeds the average speed at which
information originates from external sources. Please note that we
limited the range of our parameters to historically observed values
(Chandrasekaran and Tellis, 2007). Thus, it might be argued that we
did not explore a large enough range to observe model fits with
very large p values. As a robustness check, we examined the
number of cascades where the optimal p values were at the
maximum range of exploration we allowed. Out of 5434 cascades,
only 648 of the IC model fits had p values at their maximum value,
and of those 648, only 12 had theminimal q values. This means that
for at least approximately 88% of our cascades, the best model fit
was one where internal influence of network connections was
much higher than external influence. In fact, removing the runs
where p reached its maximum value changes the mean for DIFFU-
SION to 40.25, which illustrates how strong a role internal influence
plays in the vast majority of these cases.

4.1. Statistical modeling

We used a Generalized Linear Model (GLM) with a gamma
distribution to model Equation (2). This approach was suitable for
our model because DIFFUSION only took on positive values and
displayed a right-skewed distribution of values. Also, after probing
the relationship between DIFFUSION and INFLUENCE and LATENESS,
we observed that the variance of DIFFUSION increased with the
mean. This is consistent with the gamma distribution
(Var ½Yi� ¼ m2=n). Separate plots of DIFFUSION versus INFLUENCE for
each of the two categories in AWARENESS also revealed that there
were some outlying DIFFUSION values at extreme INFLUENCE
values, which is another property consistent with the gamma dis-
tribution (Dobson and Barnett, 2008).

To ensure an appropriate use of GLM, we also followed several
additional steps. First, we used a Pearson Chi-Squared estimation
method to estimate the GLM scale parameter (McCullagh and
Nelder, 1989). Second, we examined a log link function and an
identity link function as possible alternatives to transform the
dependent variable to estimate the GLM. Although the GLM results
were fully consistent across both link functions, the identity link
function provided significantly better Akaike's Information Crite-
rion (AIC) and Bayesian Information Criterion (BIC) fit measures
than the log link function. Thus, the results we report in this paper
correspond to those obtained using the identity link function
(Hardin and Hilbe, 2007). The results obtained using the log link
function are available upon request. Third, we used the Huber-
White sandwich estimators to estimate standard errors that are
robust to possible misspecification of the variance and link func-
tions in the GLM. Finally, we checked for multicollinearity among
the explanatory and control variables and found that almost all
correlations among these variables were fairly small (Table 5).

4.2. Results

Table 6 presents the results from the GLM. To generate these
results, we used a hierarchical approach. We first considered a
restricted model in which we regressed the dependent variable
only upon the control variables (GLM 1). Then, we regressed the
dependent variable on the control variables as well as the explan-
atory variables in the propositions (i.e., unrestricted model or GLM
2). The results from likelihood ratio chi-squared test of GLM 2
indicate that the group of explanatory variables is statistically sig-
nificant. Significant reductions of the AIC, BIC, and Deviance mea-
sures for GLM 2 also confirm that the addition of the predictors in
GLM 2 makes a statistically significant contribution in explaining
our dependent variable's variance, above and beyond the contri-
bution made by the control variables (Coxe et al., 2013; Hardin and
Hilbe, 2007).



Fig. 1. Cumulative distribution of cascades over time.

Table 5
Correlations and descriptive statistics.

1 2 3 4 5 6

1. DIFFUSION 1
2. INFLUENCE 0.03* 1
3. AWARENESS �0.01 �0.04** 1
4. LATENESS �0.25** 0.01 0.16** 1
5. BOOST 0.28** 0.01 0.01 �0.09** 1
6. FALSE �0.01 �0.04** 0.11** 0.16** �0.03 1

Mean 37.28 234,447.66 0.78 55.34 0.02 0.04
Std. Deviation 55.63 848,551.55 0.42 18.04 0.13 0.19
Minimum 12.67 0 0 0.00 0 0
Maximum 737.80 9,133,950 1 74.65 1 1

*p < 0.05, **p < 0.01.
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From Table 6, the coefficient for INFLUENCE was positive and
statistically different fromzero (p<0.05). Therefore, Proposition 1 is
confirmed: as a cascade originator's influence rises, the speed of
information diffusion in the cascade increases. Moreover, the effect
by LATENESS on the dependent variable was negative and
Table 6
GLM results.

GLM 1
Coefficients (Std. errors)

GLM 2
Coefficients (Std. errors)

INFLUENCE 1.05E-6 (4.92E-7)*
AWARENESS �0.27 (1.25)
LATENESS �0.75 (0.05)**
BOOST 124.31 (20.37)** 100.65 (18.12)**
FALSE �1.76 (1.64) 9.13 (1.61)**
Intercept 35.36 (0.68)** 77.15 (3.36)**

Scale factor 1.84 1.45
Likelihood Ratio

Chi-Square
181.51** 612.32**

AIC 49864.94 49320.01
BIC 49884.74 49359.61
Deviance 3170.49 2619.56
Obs. 5434 5434

*p < 0.05, **p < 0.01.
statistically different from zero (p < 0.01). This means that, during a
disaster event, the rate of information cascades' diffusion decreases
over time as cascades are launched later during the disaster event.
Proposition 3, therefore, is also confirmed. Proposition 2, however,
received no support since the coefficient for AWARENESS was not
significantly different from zero. Thus, we have no evidence to
conclude that cascades carrying information that heightens situa-
tional awareness during a crisis will experience faster diffusion than
cascades carrying other types of information. The lack of support for
Proposition 2 is surprising based on theory and previous findings
(Vieweg et al., 2010) but raises an important point that social media
networks like Twittermaybe limited in effectively spreading certain
types of content. This is vital for HOs to understand as they create
policies and strategies for managing information in a crisis.

Among the control variables, we observed that the coefficient
for BOOSTwas positive and significant (p < 0.01). Hence, boosting a
cascade's original message is associated with an increase in the
cascade's diffusion rate. Another result is that cascades that contain
false information circulate at a faster rate than cascades that do not.
This is evident from the positive and statistically significant coef-
ficient for the control variable FALSE (p < 0.01).
5. Discussion of results and conclusions

The planning and execution of humanitarian operations de-
pends on a variety of resources that have very short shelf lives. Our
research builds on the fact that information constitutes one of those
resources. During times of crisis, it is critical to gather and share
information quickly, but accomplishing this goal has been difficult
for reasons that include a restricted diffusion of information rele-
vant to humanitarian operations during the course of disasters (Day
et al., 2012). While it has been theorized that social media networks
built on open Internet platforms can contribute to address these
restrictions (Meier, 2015), there is limitedwork in the humanitarian
operations literature that examines whether and how this can be
accomplished. Moreover, while extant research in this field has
focused on the development of analytical models to manage in-
formation (€Ozdamar and Ertem, 2015), it is only recently that
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empirical research has begun to study these phenomena, particu-
larly in social media settings (e.g., Korolov et al., 2015).

Our study addresses this deficit in the literature by applying
Information Diffusion Theory to the context of humanitarian di-
sasters. Our findings show that, in this context, cascades on social
media networks can advance at a rate that significantly exceeds the
speed at which information originates from external sources. This
finding is important because, during humanitarian crises, speed is
key in the diffusion of information among HOs and other stake-
holders in order to plan and respond effectively to rapid changes
that occur during this type of events. Establishing that social media
networks can diffuse information via connections among its users
at a rate above that in which external sources of information
permeate these networks during a crisis constitutes an important
contribution to assessing these networks' effectiveness.

Another contribution from our results is that they show that this
speed of diffusion is contingent upon the type of users that origi-
nally publish this information. When information is issued by users
with high levels of influence, as measured by their number of fol-
lowers, it will diffuse quickly. However, this will not be the case if
the originators' influence is limited. For HOs, this implies that the
development of social connections in these networks will be a
valuable strategy to pursue in order to ensure fast communication
with stakeholders like public donors and beneficiaries during times
of crisis. Still, a question that deserves further investigation is
whether information diffusion speedwill experience different rates
of growth as a function of the originator's number of followers once
that number reaches certain thresholds. An examination of our data
revealed that the rate of growth in diffusion speed as a function of
the number of followers seems to increase as that number reaches a
threshold of approximately 600,000 followers. Originators with an
amount of followers above this threshold appear to have a signifi-
cant leverage on the diffusion of information. A reason for this is
that observations above this threshold sit at the head of a power
law distribution across users in our dataset and, thus, can exert a
significant pull on diffusion. This is in line with past research that
has identified the presence of power law distributions underlying
properties of social media networks like Twitter (e.g., Hodas et al.,
2013).

The speed of information diffusion on social media networks
during a disaster is also contingent upon the time when informa-
tion is introduced in these networks. Information that is posted
earlier during a disaster exhibits a significantly higher speed of
diffusion than information that is introduced later during the
disaster. This is because, over time, participation in the diffusion of
information cascades declines as more cascades compete for
attention among users. Such a phenomenon is particularly acute in
the context of a hurricane like the one in our study in which the
number of new cascades increases sharply over time after hurri-
cane effects materialize in large population areas (see Fig. 1). This
phenomenon also underscores a paradox in which, as a disaster
progresses, there are increasingly more cascades contributed by
originators, but the information in those cascades diffuses more
slowly. As a result, a major challenge emerges for HOs trying to
introduce urgent information and promoting its diffusion among
an increasingly larger volume of new messages posted by other
users. How can HOs increase the rate of diffusion of information
among all this chatter? Addressing this information directly to
followers or requesting explicitly that they retweet the information
can augment diffusion (Huberman et al., 2008), particularly if those
followers are themselves influential. Including hashtags and links
in messages can influence the rate in which users spread infor-
mation as well (Galuba et al., 2010).

We also observed that cascade originators may be able to in-
crease the speed of diffusion by posting the same information
repeatedly in order to raise its visibility. This practice can be
justified among HOs in particular situations where information is of
urgent nature, particularly during times of excessive chatter like
those described above. However, it remains to be seenwhether this
practice carries with it diminishing marginal returns in increasing
the rates of information diffusion. Moreover, we observed that
cascades with fabricated information infect the network at a faster
pace. Although our data demonstrate that cascades transmitting
misleading information transpire rarely (only 4% of the cascades
were false), this finding does raise troublesome questions about the
ability by HOs and other participants in social media networks to
detect and correct this type of cascade. For instance, what attributes
do cascades carrying misleading information share that could be
used to identify them before they spread too far? What mecha-
nisms can be instated in order to alert the public about these cas-
cades and reverse their diffusion? The design of policies that
address these questions and their joint implementation by a wide
variety of HOswill help improve the effectiveness of social media in
diffusing reliable information to other stakeholders.

It is also important to note that our research found no evidence
to suggest that cascades carrying content that enhances situational
awareness exhibit significantly higher diffusion rates relative to
other cascades. This is surprising given that authors have previ-
ously noted that user participation is greater for cascades with in-
formation related to situational awareness (e.g., Vieweg et al.,
2010). It is possible that the effects of other content-related fac-
tors, such as the use of Twitter hashtags or directional operators, on
cascades' diffusion rates supersede the effect of situational aware-
ness content. It is also possible that high diffusion rates may be
observable but only for those cascades contributing new situational
awareness content. That is, content that offers the most up-to-date
information of how a disaster event is unfolding.

Another limitation in our research is that it does not assess the
geographical implications of information flows in social media
networks. We do know from our data that as information diffused
on the networks, it reached a substantial amount of local in-
dividuals affected by our study's focal disaster. We found that
almost 35% of all users in our data were located in geographical
areas affected by the disaster. In total, users located in the areas
affected by Hurricane Sandy participated in almost all (96.87%) of
the cascades. In addition, in 80% of the cascades in our data, 20% or
more participants were located in areas affected by the disaster.
Thus, a large amount of information in these cascades did manage
to reach people located in areas of need.

Prior evidence suggests that local individuals who are
geographically vulnerable during a disaster share information
differently in social media networks than individuals located in
areas unaffected by the disaster (Starbird and Palen, 2010). In
particular, local individuals are more likely to contribute informa-
tion during a humanitarian crisis than other individuals. Those local
to a disaster are also more likely to propagate information received
from other local individuals during a disaster (Kogan et al., 2015).
Given this evidence, we expect that an increase in local users'
participation in information cascades will improve the cascades'
rate of diffusion in social media networks. Future research in the
context of cascades carrying disaster-related information in social
media networks could assess empirically whether local users'
participation in these cascades will contribute positively to the
cascades' rate of diffusion.

Lastly, this research empirically tests theoretical propositions
using data from a disaster that was not completely unexpected or
unpredictable. However, some disasters that HOs must respond to
occur without warning (e.g., earthquakes, terrorist attacks). Future
research can analyze whether the theoretical propositions pre-
sented in this paper hold in the context of sudden-onset
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emergencies and whether additional factors specific to this setting
impact the diffusion rate of information on social media platforms.

Inspired by the emergence of social media usage during di-
sasters, our study examined the effectiveness of information
propagation on social media platforms and identified factors that
affected the rate of information diffusion. Beyond this context,
commercial firms have also started to leverage social media to
catalyze word-of-mouth marketing and enhance brand awareness
and engagement (Hoffman and Fodor, 2010). However, key differ-
ences exist regarding information cascades on social media in hu-
manitarian versus commercial settings. For instance, in an
anticipated event, such as the release of a new product, firms often
initiate cascades and engage with consumers to generate buzz. HOs
and other stakeholders can also use social media platforms to share
preparation information as forecasted disasters draw closer and
intensify. However, commercial firms are better able to control and
manipulate cascade formation and diffusion in these events since
information typically originates from the firm and does not involve
as many stakeholders as in humanitarian settings.

Firms also utilize social media as an information tool during
unexpected events involving product and service failures. For
example, firms in the electronics industry frequently monitor so-
cial media to identify information about hardware and software
defects reported by consumers while firms in the transportation
industry routinely use social media to trace information about
unexpected service failure events. Cascades with this information
are more likely to originate from dispersed geographical areas
unlike cascades with information from victims of unexpected,
sudden-onset disaster events (e.g., earthquakes, terrorist attacks),
which can largely be traced to more limited geographical areas.
While these characteristics help differentiate cascades on social
media in commercial and humanitarian contexts, we encourage
researchers to continue investigating cascade behavior to increase
our understanding of how information disseminates on social
media.
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