
Workforce Configuration in Charity Settings: A
Forward-looking Approach

(Authors’ names blinded for peer review)

Problem definition: Serving as the primary workforce for many charitable organizations, volunteers

represent a unique and complex labor pool. Not only are they often unreliable, but they also exhibit

considerable heterogeneity in performance and affinity to the organization. Further, many volunteers

engage not merely to contribute but also to partake in a volunteering experience, which has the potential

to transform them into future donors. Acknowledging these distinct features, this paper aims to present a

forward-looking optimization model to refine volunteer scheduling. Methodology/results: Building on

our field study and insights from existing literature, we propose a model that accounts for the diversity

among volunteers, mitigates both understaffing and overstaffing costs, and explicitly correlates individual

contributions in both time and monetary donations. We provide analytical solutions when the charity

can reliably estimate distributions from data. In cases where data is limited or uncertain, we suggest

a distribution-free method to offer actionable insights for managerial decision-making. Managerial

implications: At a high level, by viewing volunteers as potential donors, the optimal staffing strategy

balances the charity’s need to fulfill its labor requirements against the workers’ utility of the volunteering

experience, since the latter influences whether the volunteer is transformed into a future donor. Our findings

reveal that the charity in our study could avert substantial losses by adopting this integrative approach,

thereby challenging the conventional organizational structures in charities that compartmentalize volunteer

and donor management. We also distill several managerial insights, such as identifying scenarios where: (i)

the episodic volunteers are the preferred group to be invited, and (ii) enhancements in labor performance

could paradoxically diminish the charity’s overall utility. Based on our field study and computational

experiments, we have identified advantages and disadvantages associated with various policies. However, we

also demonstrate that building a robust data infrastructure can markedly improve volunteer management

performance. We conclude by offering an Excel-based decision support tool and a decision-tree framework

designed to navigate optimal policies within the constraints of operational realities.
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1. Background

In 2020, despite the formidable challenges posed by the Covid-19 pandemic, an estimated 23% of

the U.S. population–equivalent to more than 60 million individuals–volunteered their time and skills

in charitable organizations. These volunteers collectively logged an impressive 4.1 billion hours,

representing an economic value of a staggering $122.9 billion (AmeriCorps 2023). Similarly active

volunteerism is observed outside of the U.S. For instance, out of the 5.2 million Australians who

volunteered their time in 2006, a remarkable 84% collectively contributed 623 million hours to the

Australian non-profit sector, corresponding to an estimable 15 billion Australian dollars (Produc-

tivity Commission 2008). Volunteers play a pivotal role in a plethora of administrative and opera-

tional tasks, constituting a cornerstone of the labor force for many charitable institutions. Emerging
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research in volunteer management has illuminated various dimensions of this field, from the nuanced

relationship between volunteers’ time and monetary donations (Brown et al. 2019), to innovative

strategies for enhancing volunteer motivation (Gage and Thapa 2012; Beder and Fast 2008; Hustinx

et al. 2008), to volunteer retention (Cnaan and Handy 2005; Hyde et al. 2016), to mechanisms for

improving volunteer retention (Dwiggins-Beeler et al. 2011), and even to the development of optimal

policies for matching a volunteer’s preferences with suitable opportunities (Brudney and Meijs 2009;

Manshadi and Rodilitz 2022). However, what remains conspicuously absent is a dedicated investiga-

tion into the volunteer staffing question, particularly one that takes into account the idiosyncratic

characteristics intrinsic to managing a volunteer workforce. The goal of this study is to fill this

research gap.

To address this issue, one must first understand the unique characteristics that define volunteer

management in charitable organizations, characteristics that are markedly different from the features

of workforce management in commercial enterprises. Contrary to the conventional wisdom that

volunteers are ubiquitously available, uniformly motivated, and universally capable, the reality is

far more nuanced. Volunteers exhibit a considerable heterogeneity, not only in the strength of their

affiliation with the charity but also in their reliability and performance levels. For instance, volunteers

with tenuous ties to the charity are often less dependable in their turnout and may be less effective

in task execution owing to their lack of experience. Such volunteers can inadvertently become a

costly labor supply for the charity. Take, for example, a volunteer who fails to appear for a “meal

packaging” event. The absence engenders dual costs for the charity: a shortage cost due to unmet

demand and an obsolescence cost attributable to the waste of unused raw materials.

In practice, volunteers generally fall into two categories: formal and episodic (Hustinx et al. 2008).

Formal (also known as regular) volunteers are those who display a long-term commitment and a

profound dedication to a specific cause. They serve with regularity, often resembling paid staff in

terms of reliability and scheduled attendance. In contrast, episodic volunteers make up the majority

of the volunteer workforce (Low et al. 2007; Cnaan et al. 2022). Their involvement is sporadic

and typically confined to specific periods. These individuals are drawn to short-term flexible tasks

and are less motivated by altruistic and social factors (Hustinx and Lammertyn 2003; Beder and

Fast 2008; Cnaan et al. 2022). For instance, our field study at a local charity (the Society of St.

Vincent de Paul in Phoenix) revealed a striking challenge: the no-show rate for episodic volunteers

averages around 30%. Most absentees either fail to inform coordinators of their absence or do so

too late to secure a replacement. Episodic volunteers’ high rate of unreliability leads to significant

understaffing, resulting in unmet demands and increased operational costs for the charity (Hyde

et al. 2016; Ata et al. 2019). While the ideal volunteer base might consist of a dedicated cadre

of formal volunteers, this group is not only limited in number but also appears to be in decline



Authors’ names blinded for peer review
3

nationally (Brudney and Meijs 2009); In today’s fast-paced world, many people are too busy to

make long-term commitments to a single organization or cause, preferring instead brief engagements

(Cnaan et al. 2022). Consequently, managers often find themselves needing to augment their core

team with episodic volunteers to adequately meet operational demands. However, overcompensating

for potential absenteeism by inviting an excess of volunteers is not a viable solution (Ellis 2007). Such

overstaffing risks creating an environment where volunteers feel superfluous, which in turn could

lessen their eagerness to contribute in subsequent instances (Smith 1998; Sampson 2006; Dwiggins-

Beeler et al. 2011). Vecina et al. (2012) show that volunteer satisfaction is projected to influence

individuals’ intention to continue volunteering, at least in the short term. Our analysis of volunteer

surveys from the charity corroborates this concern; numerous volunteers expressed dissatisfaction,

stating they “had little work to do and left early due to sufficient staffing.” This sentiment aligns

with a survey analysis by Sampson (2006), which indicates that both the underutilization and

overextension of volunteer labor can discourage future participation.

Another significant challenge arises when episodic volunteers, spontaneously invite friends or fam-

ily to join them, often without prior notification to the charity. This unscheduled influx can lead to

an overstaffing issue, making the event appear disorganized. However, turning away these uninvited

volunteers is generally not an option, discourage individuals from making future contributions in any

capacity (Daniels and Valdés 2021). Moreover, as one charity manager put it, “Volunteering work is

an experience we offer to people, and our aim is to extend this experience to as many individuals as

possible. Yet, we don’t want them to arrive only to discover there is little to be done.” As a result,

episodic volunteers introduce an element of volatility into the staffing equation; they may either fail

to appear as scheduled or unexpectedly arrive with additional, unsolicited volunteers in tow.

Second, contrary to conventional wisdom, the contributions of volunteers extend beyond mere

labor. Studies show that the relationship between individuals’ time and monetary donations is com-

plementary (Brown and Lankford 1992; Cappellari et al. 2011), and even suggest that volunteering

can actually boost financial contributions (Apinunmahakul et al. 2009). In essence, volunteering not

only raises awareness about the charity’s needs but also enhances transparency, thereby building

trust between the individual and the organization (Parsa et al. 2022). Such events serve as crucial

touchpoints that solidify the bond between volunteers and the charity, having a significant impact

on future donations (Olsen and Eidem 2003; Feldman 2010; Bekkers and Wiepking 2011). Many

volunteers prefer to “test the waters” by volunteering before they commit to financial donations

(Fritz 2019; Dietz and Keller 2016). This perspective is corroborated by experiments showing that

individuals who first consider donating their time are more likely to also donate money (Liu and

Aaker 2008). Recent laboratory experiments have demonstrated that due to the effect of moral

consistency, participants assigned to volunteering tasks are more likely to donate, and in larger
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amounts, compared to those who did not serve as volunteers (Authors 2023). These findings align

with field studies; for example, a survey conducted by Fidelity Charitable (2014) shows that over half

of volunteers indicate that their volunteering experience leads them to make financial contributions.

Another survey found that 87% of individuals who support charities donate both time and money,

and 43% donate money to the same charities where they volunteer (Fidelity Charitable 2014). This

illuminates the dual role of a volunteer: as a producer of social welfare and also as a customer of

the volunteering experience. The satisfaction derived by the volunteer-customer during their engage-

ment not only influences their immediate contributions but also shapes their future relationship with

the charity, including potential financial donations (Miller et al. 1990; Clary et al. 1998; Dwiggins-

Beeler et al. 2011). For the long-term sustainability of the charity, it is imperative to reconcile these

dual roles when planning staffing needs. Yet, the common organizational structure in charities often

silos volunteer management and donor management into distinct functions. Specifically, volunteer

program managers focus on task design and volunteer recruitment, while development managers

oversee fundraising initiatives and donor relationships. This compartmentalized approach misses the

opportunity to leverage the synergistic potential between volunteerism and donorship.

Third, the composition of volunteers at each event plays a pivotal role in enhancing their engage-

ment. Generally, the relationship between episodic volunteers and the organizations they serve is

often transient and task-oriented, lacking the psychological contract commonly found with formal

volunteers (Vantilborgh et al. 2011). Unlike formal volunteers, who often develop expectations and

sustain dyadic relationships with the host organization, episodic volunteers tend to engage solely for

the completion of a specific task, often disappearing thereafter with a likelihood of not returning

(Cnaan et al. 2022). This nature of engagement leads to high turnover rates among episodic volun-

teers, who are typically drawn to enjoy the occasion or event (Hyde et al. 2016). Formal volunteers

often represent a homogeneous group, sharing similar identities, beliefs, and motivations towards a

specific social cause (Charness and Chen 2020). Research indicates that such homogeneous groups

are more effective in contributing to public goods compared to their heterogeneous counterparts

(Burlando and Guala 2005; Gachter and Thoni 2005; Ai et al. 2016). Moreover, homogeneity fosters

stronger group cohesion (Bugen 1977; Lieberman et al. 2005), which in turn cultivates a sense of col-

lective psychological ownership among members (Pierce and Jussila 2010). This heightened sense of

ownership enhances the likelihood of future donations (Peck et al. 2021; Jami et al. 2021). Addition-

ally, the frequency of interactions among formal volunteers fosters a robust group identity (Fraser

et al. 2009; Gray and Stevenson 2020). As such, a formal volunteer’s gratification in contributing to

a charity’s mission–and consequently, their propensity for future donations–is influenced not just by

their individual commitment, but also by the endogenous decision-making processes related to team

composition. For instance, survey data from our observed charity reveals a pronounced preference
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among formal volunteers for working within their usual groups.1 As a result, a formal volunteer’s

pleasure in contributing to the charity’s mission – and consequently, their inclination for future

donations – is partly shaped by the internal dynamics of team composition. In light of this, we

posit that formal volunteers are likely to make more substantial donations when grouped with their

regular, like-minded counterparts. On the other hand, episodic volunteers appear to exhibit a more

laissez-faire attitude toward team composition.

The aim of this study is to craft a streamlined volunteer management model that accounts for

the unique complexities of volunteer scheduling, ultimately enhancing a charity’s long-term utility.

To ascertain the optimal number of volunteers and the ideal team composition for each event, we

introduce a framework that accommodates volunteer heterogeneity, turnout uncertainty, both under-

staffing and overstaffing costs, and the dual role of volunteers as both labor and potential future

donors. In addition, we take into account the composition of volunteer teams. Despite the additional

complexity leading to a non-convex model structure, we were able to derive a closed-form expression

for the optimal staffing plan. This allows us to offer actionable insights for improving charity pro-

cesses. We show that reducing volunteer turnout uncertainty is universally beneficial for charities.

This could be achieved, for instance, by sending tailored messages that underscore the significance

of the task at hand, thereby enhancing the value-based aspects of volunteers’ psychological contracts

(Vantilborgh et al. 2012; De La Torre Pacheco et al. 2023). Intriguingly, while conventional wisdom

might suggest that improving the efficiency of reliable volunteers through training programs would

be advantageous, our model reveals this is not always the case. This counterintuitive finding arises

because more efficient volunteers lessen the total number of volunteers needed for an event, which in

turn could reduce monetary donations due to fewer volunteers experiencing the activity. Therefore,

any efficiency-boosting training must be harmonized with a redesign of the volunteer event to ensure

adequate tasks for a comparably sized volunteer pool. Our study challenges traditional charity struc-

tures by introducing a volunteer management model that explicitly recognizes the multifaceted role

of volunteers.

Moreover, we supplement our model with a series of numerical experiments, conducted in part-

nership with a local charity in Phoenix, Arizona, as well as a nonprofit consulting firm.2 One critical

insight garnered from these collaborations is the prevalent issue of data quality, especially in the

realm of volunteer management. This challenge partly stems from charities’ relentless efforts to min-

imize overhead costs, leaving little room for infrastructural investments (Parsa et al. 2022). Further,

in practice, many charities are also reticent to monitor volunteer attendance and performance rigor-

ously. For instance, a manager at our focus charity noted, “We refrain from grading our volunteers

1Comments such as “I prefer to work with the usual group,” “I love working with my regular fellow volunteers,”
and “It feels like the volunteers are a second family” underscore this sentiment.

2AmPhil: https://amphil.com/
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because it is a sensitive subject. Our concern is that such evaluations will turn them away.” This

reluctance to gather volunteer data results in a lack of automated and consistent data collection

methods. Our examination revealed that approximately 40% of this particular charity’s data records

contained some degree of error.3 In light of these challenges, we extended our model by adopting a

distributionally robust optimization approach, which we solve numerically. The method we propose

for solving the robust model is presented in the Appendix. Our numerical experiments demonstrate

that implementing the proposed closed form policy generates a median increase of 6.41% in the

combined value of labor and donations. Alternatively, deploying the distributionally robust solution

elevates the total utility by a median of 8.87%. A comparative analysis of various models reveals a

paradigm shift in the role of volunteers when a charity incorporates future donations into its planning

calculus. Traditional volunteer planning models, which disregard the potential for future donations,

prioritize highly reliable volunteers who have strong affiliations with the charity for staffing events.

Less reliable volunteers are only called upon in scenarios of labor shortages. In contrast, our model,

which accounts for volunteers as prospective donors, suggests that less reliable volunteers might

actually be preferable in certain contexts. This counterintuitive finding emerges when these less reli-

able volunteers place a high intrinsic value on the volunteering experience, translating into increased

monetary donations that outweigh the expected shortfall in labor contributions due to their unreli-

ability.

Labor scheduling remains a pivotal subject in operations management, primarily driven by the

profound impact of labor costs on operational expenditures (Van den Bergh et al. 2013; Smilowitz

et al. 2013); Industries like healthcare and service desks witness labor salaries being responsible for

over half of their operational overheads (Villarreal et al. 2015). Thus, even marginal enhancements

in labor productivity and morale can usher in notable savings, curbing staff attrition. Taking a

magnifying lens to commercial settings, Van den Bergh et al. (2013) offer an exhaustive literature

survey, illustrating a thorough review of various employment settings, including full-time and part-

time positions, flexible schedules, and workers’ preferences for teamwork or specific shifts. Berman

3This challenge becomes even more convoluted in larger food banks offering a diverse array of volunteering tasks,
as attendance recording processes can differ markedly across various programs. For instance, the charity we studied
provides approximately 44 distinct volunteering tasks and adapts this list based on evolving needs. While some programs
employ dedicated staff to meticulously track volunteer attendance, others leave the responsibility of check-in and check-
out to the volunteers themselves. Feedback from volunteer surveys revealed a significant pain point: volunteers find
the process of clocking in and out to be both redundant and cumbersome. Many expressed that this administrative
chore makes them feel as though they are working rather than volunteering, undermining the altruistic essence of their
involvement. Consequently, we observed numerous manual data entry errors in the charity’s attendance records. It is
not uncommon for the attendance record of a volunteer involved in a recurring event for several months to indicate
either a “no-show” or to be left blank. At times, volunteer managers discover these discrepancies only at the conclusion
of a program, at which point they might attempt to rectify the record by inputting an “estimated total volunteering
hours” or by appending comments to account for the missing entries. Unfortunately, such post-hoc adjustments mean
that the authentic record of volunteer involvement is often lost in translation.
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et al. (1997) tackles the classic problem of employee scheduling by introducing a model that effi-

ciently organizes factory staff schedules, taking into consideration costs, service quality, contractual

obligations, and physical limitations. In contrast, Villarreal et al. (2015) offers a more contempo-

rary perspective, developing a mathematical framework to align workforce numbers with demand.

This model cleverly addresses the challenges of meeting time-sensitive demand, catering to individ-

ual employee characteristics, and operating within the confines of organizational capacity. Ulmer

and Savelsbergh (2020) investigates the unpredictable nature of crowdsourced delivery, where main-

taining a high standard of service is crucial. To counteract the uncertainty of this approach, some

companies prefer a structured delivery system, which ensures a level of predictability. Ulmer and

Savelsbergh (2020) provides a strategy for such delivery systems that reduces uncertainty and guar-

antees exceptional service. While the current body of research yields significant understanding and

bears resemblance to our study, this paper forges a novel path by exploring the phenomenon of

workers voluntarily donating time and money to the charitable organizations.

Building on the points raised earlier, this paper enriches the existing literature on workforce man-

agement by focusing on the unique aspects of volunteer labor. While paid workers and volunteers

share some similarities, they diverge significantly when it comes to job satisfaction and motivational

underpinnings. The literature identifies a range of motivations, from altruistic to social, that drive

individuals to volunteer. For instance, an altruistically inclined volunteer may discontinue their rela-

tionship with a charity if they feel their contributions lack meaningful impact, thereby underscoring

the risks of overstaffing volunteer events (Clary et al. 1998; Dwiggins-Beeler et al. 2011). In com-

mercial sectors like retail and call centers, labor no-shows also present challenges, affecting customer

satisfaction and overall sales (Fisher et al. 2006). Proposed solutions often hinge on employing flex-

ible labor forces, such as part-time or temporary workers (Kesavan et al. 2014; Kamalahmadi et al.

2021). However, an overreliance on such flexible labor can negatively affect performance (Kesavan

et al. 2014). Recent field experiments suggest that stable scheduling can both reduce labor costs and

boost sales, primarily by enhancing employee effort and decreasing turnout uncertainty (Kesavan

et al. 2022).

In volunteer settings, however, such flexible labor policies may be less effective. Unlike paid work-

ers, who are motivated by monetary rewards, volunteers are driven by a desire for meaningful service;

they contribute their time to gain an experience to serve (Dwiggins-Beeler et al. 2011). As creators

of social good, they are less inclined to be available for on-call shifts and may feel undervalued if

treated merely as backup labor. Moreover, practitioners highlight that the operational context of

volunteer events differs substantially from commercial settings. Typically organized as short shifts,

labor shortages in volunteer events often become apparent only shortly before their commencement,

making it impractical to summon backup volunteers. Additional distinctions arise in organizational
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objectives. In commercial settings, the objective of workforce management is to cover the demand

while minimizing labor costs (Mason et al. 1998), while there is no such labor costs for volunteers

(Sampson 2006). Furthermore, unlike in commercial settings where employees have little say in

their schedules, volunteers exercise significant control over their availability, adding another layer of

complexity to effective workforce management (Sampson 2006).

This paper positions itself within the burgeoning field of research focused on volunteer labor

staffing, yet distinguishes itself from the prevailing approaches. For instance, Gordon and Erkut

(2004) employ integer programming to construct a scheduling model but overlook the cost impli-

cations of volunteer shortages. Sampson (2006) address this gap by using goal programming to

minimize a composite cost function that includes labor shortage, over-utilization, and volunteer-task

mismatch. However, their model primarily distinguishes between volunteer and commercial labor in

terms of cost structures. Building on this, Falasca and Zobel (2012) extend the framework proposed

by Sampson (2006), introducing a multi-objective optimization model aimed at assigning humani-

tarian volunteers to various tasks across multiple locations, while acknowledging that labor costs are

not negligible. In the realm of humanitarian relief, Lassiter et al. (2015) employ a robust optimiza-

tion approach to account for task demand uncertainty, offering a dynamic and flexible framework

for volunteer allocation. Further contributing to this discourse, Ata et al. (2019) explore volunteer

staffing under conditions of supply and demand uncertainty. Meanwhile, Urrea et al. (2019) examine

the influence of volunteer experience on performance outcomes, demonstrating that a homogenous

group of volunteers based on experience level performs more effectively than a mixed group. Our

study diverges from this existing body of work by introducing a unique set of considerations, offering

fresh perspectives and novel solutions for volunteer labor staffing. This paper specifically proposes

a model wherein donations and labor are amalgamated within a volunteer workforce.

First, we substantiate our core assumptions through a multi-faceted validation process that

encompasses a case study of a prototypical charity’s volunteer operations, expert interviews from

a renowned nonprofit consulting firm, and an exhaustive review of scholarly works in both social

psychology and behavioral economics. Second, we introduce an optimization model that adeptly

balances the costs associated with both understaffing and overstaffing, while establishing an explicit

linkage between an individual’s time commitment and monetary donations. This duality is seamlessly

integrated into the charity’s overarching objectives. Furthermore, our analytical framework offers

volunteer managers straightforward, yet insightful, guidance that can be effortlessly implemented

through commonplace tools like Excel spreadsheets for event scheduling. To enrich the practical

applicability of our model, we delve into the nuanced heterogeneity of volunteers and account for

all pertinent operational constraints. From this, we derive easy-to-interpret decision tree models

tailored for various volunteer tasks, thereby offering managers a granular yet comprehensive toolkit

for volunteer scheduling.
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2. Model

Our central question seeks to determine the optimal number of volunteers of each type to schedule,

with the objective of maximizing the total expected utility derived from both time and monetary

contributions. In Section 2.1, we initially model the influence of the volunteer composition, denoted

by x, on task completion. Subsequently, in Section 2.2, we examine its implications for prospective

monetary donations. Lastly, in Section 2.3, we articulate the volunteer staffing conundrum.

Suppose the charity invites x= (xe, xf ) episodic and formal volunteers for the volunteering oppor-

tunity. Due to their longstanding affiliations with the charity, all scheduled formal volunteers are

reliably committed to attending. Conversely, the attendance of episodic volunteers is subject to vari-

ability. We capture this stochasticity by introducing a non-negative random variable H, which we

designate as the “turnout proportion.” We assume that H follows a uniform distribution for two

principal reasons. First, within a given interval, the uniform distribution represents the maximum

entropy distribution, implying that all potential turnout proportions are equally likely. This assump-

tion is aligned with the operational realities of many charities, which frequently encounter difficulties

in managing volunteer data and forecasting turnout rates. Second, the uniform distribution is advan-

tageous for creating parsimonious models with minimal parameters, thereby enhancing the model’s

interpretability and facilitating insight generation.4 Although we refer to H as a proportion, it can

generally attain a value greater than 1. For the sake of simplicity, we use E[·] to denote the expecta-

tion of random variable H and let hℓ and hu denote the lower and upper bounds of H, respectively.

Hence, the number of volunteers who show up to the event is (Hxe, xf ) with H ∼U(hℓ, hu).

2.1. Effect on work completion

Let λ denote the number of volunteer hours required to complete the assigned tasks. Formal vol-

unteers are inherently more efficient than their episodic counterparts. Therefore, without loss of

generality, we assume that an episodic volunteer contributes the equivalent of one “volunteer hour,”

while a formal volunteer contributes θ volunteer hours (θ ≥ 1). (If episodic and formal volunteers

contribute a and θa volunteer hours, respectively, we can scale demand λ by a.) We also assume that

volunteer managers can estimate the value of θ based on their knowledge of volunteering events and

interactions with volunteers. Hence, the total labor hours available for the job is v=Hxe+θxf . Since

volunteer turnout is random, Hxe and v are stochastic quantities. The charity management prefers

to ensure a sufficient workforce to complete the assigned tasks. Consequently, it gains a per-unit

operational benefit w > 0 for each unit of work completed, min(λ, v); volunteer tasks that are com-

pleted yield a total operational benefit wmin(λ, v). The charity incurs an understaffing cost if there

4One may choose to apply a binomial distribution to model the turnout uncertainty. While this approach is easy to
implement in practice, it becomes infeasible if the average turnout exceeds one. Additionally, the binomial distribution
assumes the independence of each Bernoulli trial. However, the arrivals of episodic volunteers are often correlated. Our
approach accounts for this correlation by modeling the total number of people who arrive.
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is any unfinished volunteer work. A per-unit penalty cost τ > 0 is applied for each unit of unfinished

work (λ− v)+. Beyond the direct costs and benefits associated with staffing levels, the charity also

faces the nuanced issue of overstaffing. An excess of volunteers can undermine individual perceptions

of meaningful contribution, leading to diminished engagement with the organization (Smith 1998).

We model this as a per-unit overstaffing cost γ > 0 incurred for any idle volunteer hours, (v− λ)+.

Accordingly, the charity’s total labor gain is

Lx(Hxe, xf ) :=wmin(λ,Hxe + θxf )− τ(λ−Hxe − θxf )
+ − γ(Hxe + θxf −λ)+. (1)

We can define a new parameter β := τ +w to be the total labor shortage cost, and rewrite (1) as

Lx(Hxe, xf ) = (w−β)λ+β(Hxe + θxf )− (β+ γ)(Hxe + θxf −λ)+. (2)

2.2. Effect on monetary donations

Let de > 0 denote the average increase in monetary donations attributable to the presence of an

episodic volunteer. For formal volunteers, the average donation gain consists of two components: one

driven by enhanced group identity, and the other influenced by unobserved factors such as altruism or

the warm glow effect (Andreoni 1990). Specifically, df > 0 represents the donation gain attributable

to these unobserved factors, while d′fu(Hxe, xf ) quantifies the donation increase resulting from the

formal volunteer’s sense of identification with the volunteer group. Here, u(Hxe, xf ) signifies the

utility derived by formal volunteers in a group consisting of Hxe episodic and xf formal volunteers.

Invoking a slight abuse of notation, we can express u as a univariate function of the transformed

variable ρ :=Hxe/xf , which represents the ratio of episodic-to-formal volunteers. This measure finds

a parallel in the work of Kesavan et al. (2014), who also quantify labor mix using the ratio of part-time

to full-time laborers. While the presence of more formal volunteers strengthens the group identity,

the marginal utility from additional formal volunteers exhibits diminishing returns. For instance,

once a formal volunteer has established friendships through the volunteer event, the inclusion of

subsequent formal volunteers may exert a diminished impact on the overall group identity. Therefore,

we assume that u is non-negative and convex decreasing in ρ. For example, u can take an exponential

form, u(ρ) = eα−ρ, a quadratic form, u(ρ) = (c−aρ2+ bρ)+, an absolute value function form, u(ρ) =

(α− |b− ρ|)+, or a linear form, u(ρ) = (α− ρ)+. If (Hxe, xf ) is the number of volunteers on the day

of the job, the charity gains a total benefit associated with monetary donations equal to

Mx(Hxe, xf ) := deHxe + dfxf + d′fxf

(
α− Hxe

xf

)+

. (3)



Authors’ names blinded for peer review
11

2.3. Volunteer staffing decision problem

Let X represent the set of feasible staffing decisions. Suppose that the volunteer manager is

only concerned with the work completed, the staffing decision problem is maxx∈X E [Lx(Hxe, xf )].

Alternatively, if the manager is concerned with how the staffing decision affects both the cur-

rent work completion and the future monetary donations, then the staffing decision problem is

maxx∈X E [Jx(Hxe, xf )], where Jx is the joint objective Jx(Hxe, xf ) :=Lx(Hxe, xf )+Mx(Hxe, xf ).

The novelty of the utility function Ep [J
x(Hxe, xf )] is that it compares the trade-off between (i)

individuals’ time and monetary donations, and (ii) labor shortage and surplus cost. To the best

of our knowledge, there exists no analytical research that explores the trade-off between individ-

ual time and monetary donations within the context of workforce management. Given the inherent

unpredictability of volunteer turnout, the manager possesses only limited information concerning

the attendance ratio of episodic volunteers. Specifically, we postulate that the manager can reliably

estimate only two parameters, hℓ and hu, based on their wealth of experience. (In Section 5, we

further enrich our model by introducing a distribution-free method that allows volunteer managers

to leverage existing charity volunteer data while accommodating the inherent ambiguities present

within that data.)

We refer to volunteer managers’ decision as the volunteer staffing (VS) problem. If the volunteer

manager is only concerned with work completion, then she can solve the following VS variant:

L∗ :=max
x∈X

L(x) :=max
x∈X

E[Lx(Hxe, xf )]. (VS-L)

We denote this as the VS-L problem, where “L” signifies a labor-oriented objective. Let x∗ be the

solution to Equation (VS-L). If the charity proceeds with x∗ volunteers, the expected labor benefit

will be denoted by L∗. Should the volunteer manager aim to optimize both task completion and

future monetary donations, they can address the following variant of the VS problem:

J∗ := max
x∈X

J(x) := max
x∈X

E[Lx(Hxe, xf )+Mx(Hxe, xf )]. (VS-J)

We refer to this problem as VS-J, where “J” refers to a joint objective of labor gain and monetary

donations. Suppose x∗ is the solution to (VS-J). If the charity accepts x∗ volunteers, then the

charity’s expected labor joint benefit will be J∗. Program managers favor maintaining a minimum

number of formal volunteers, leveraging their expertise and efficiency to facilitate the volunteer task.

Accordingly, we impose a lower bound constraint xf ≥ xf,ℓ. Additionally, given that the charity

operates with a limited pool of formal volunteers, there is an upper limit to their availability for any

given task. We model this limitation through the constraint xf ≤ xf,u. We also incorporate an upper

bound on the number of episodic volunteers, denoted by xe,u. Therefore, the feasible set is defined

as:

X :=

{
x= (xe, xf )∈R+ ×R+ :

xe ≤ xe,u

xf ∈ [xf,ℓ, xf,u]

}
. (4)
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(a) Function L(x) (b) Function J(x)
Figure 1 The functions L(x) and J(x) are plotted against different values of x= (xe, xf ). Note the non-concavity of

J . For these plots, we set λ= 50,w= $10, hℓ = 0.1, hu = 1.2, θ= α= 1, γ = β = 25, de = $15, df = $2.5, d′f =

$15.

3. Optimal staffing decisions under VS

In this section, we derive the optimal staffing decisions under the variants of the VS problem. By

abuse of notation, we let x∗ = (x∗
e, x

∗
f ) refer to the optimal solution where the model (L or J) is clear

from the context.

3.1. Model VS-L

We analyze model VS-L whose objective function is L(x) :=E[Lx(Hxe, xf )]. From (2), E[Lx(Hxe, xf )]

is a newsvendor objective with random yield, Hxe+ θxf , and known demand, λ. So, E[Lx(Hxe, xf )]

is jointly concave in x. The concavity of L is illustrated in Figure 1a. Theorem 1 provides a formal

articulation of the optimal solution to Equation (VS-L). The proof is elaborated in Section A.

Theorem 1. The solution to (VS-L) is x∗
f = min{xf,u,

λ
θ
} and x∗

e =
(λ−θx∗f )

√
β+γ√

h2
ℓβ+h2

uγ
. The optimal

value is L∗
u =wλ+

(λ−θxf )(βhℓ+huγ−
√
β+γ

√
h2
ℓβ+h2

uγ)

hu−hℓ
.

Recall that each formal volunteer contributes θ volunteer hours. Consequently, x̄f :=min{xf,u,
λ
θ
}

represents the maximum number of formal volunteers that can contribute to fulfilling the requisite

volunteer hours λ. According to this theorem, when the charity’s objective is solely focused on

work completion, the optimal strategy is to accept the maximum number of formal volunteers (i.e.,

x∗
f = x̄f ). This result is intuitive because formal volunteers are preferred over episodic volunteers due

to their experience at performing the task (θ≥ 1) and their reliability at turning up.

3.2. Model VS-J

Unlike (VS-L) which is a convex optimization problem, the robust staffing problem with a joint objec-

tive (VS-J) is generally non-convex. Hence, we generally cannot use efficient convex optimization

techniques in solving (VS-J). For analytical tractability, we let u(ρ) = (α− ρ)+, where ρ=Hxe/xf

is the ratio of episodic-to-formal volunteers. If ρ > α, a formal volunteer does not identify with the

group since there are too few formal volunteers; hence, their monetary donation is not improved by
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the group identity. Even in the linear case, the objective function J(x) is neither concave nor convex

(see Figure 1b). In what follows, we will first study (VS-J) by deriving the closed-form solution in

the case when the constraints (i.e., bounds on the volunteer types) are non-binding. Under binding

constraints, the model becomes significantly more complex because the solution depends on which

sub-scenario the binding constraints fall into. Therefore, we will delve into computational methods

for handling binding cases in Section 5.

This closed-form solution offers significant pragmatic advantages to charitable organizations, as it

can be seamlessly integrated into the scheduling procedures employed by volunteer managers. For

instance, such a solution could be programmed into an Excel spreadsheet, affording straightforward

guidelines for managers concerning the requisite numbers of episodic and formal volunteers for

planned events. Furthermore, in the context of relaxed bound constraints (i.e., under the assumption

of a sufficient volunteer pool in the long term), this solution provides invaluable insights for program

managers regarding the optimal types of volunteers to recruit, tailored to their anticipated events.

If the group composition is (Hxe, xf ), then under a linear utility, the combined labor and monetary

donation gain, Jx(Hxe, xf ) :=Lx(Hxe, xf )+Mx(Hxe, xf ), is:

(w−β)λ+(de +β)Hxe +(df +βθ)xf − (β+ γ)(Hxe + θxf −λ)+ + d′f (αxf −Hxe)
+
. (5)

Note that Jx(Hxe, xf ) is neither concave nor convex in x = (xe, xf ), a property that carries over

to J(x). Hence, we cannot solve (VS-J) using standard convex optimization techniques. However,

Jx(Hxe, xf ) is a piecewise-linear function in H with two breakpoints, h0 :=
λ−θxf

xe
and hf :=

αxf
xe

. The

two breakpoints h0 and hf represent the labor cost threshold for the newsvendor and the threshold

for additional donations from formal volunteers, respectively. This property makes model (VS-J)

suitable for closed-form analysis for each possible sub-region. Armed with the closed-form expression

for J(x), we are now poised to derive the solution to (VS-J). A challenge is that J(x) is neither

concave nor convex (see Figure 1b). Consequently, solving (VS-J) entails evaluating J(x) across six

subdomains within the feasible set X . It is crucial to note that the optimal solution is contingent

upon the boundary values xf,ℓ, xf,u and xe,u that delineate the feasible set X . For the sake of model

parsimony, we focus on deriving the solution in the scenario where these bounds impose minimal

constraints; specifically, when xf,ℓ = 0 and both xf,u and xe,u are sufficiently large.

First, let us examine the situation wherein volunteering has a significant impact on subsequent

donations. We differentiate between two particular scenarios: (1) the maximal monetary gain accrued

from formal volunteers surpasses the overstaffing costs, mathematically expressed as df +αd′f > θγ,

and (2) the average monetary donation from episodic volunteers exceeds the costs incurred due to

the uncertainty of their turnout, formulated as de >γ. It is imperative to note that the donation from

a formal volunteer diminishes with the addition of more episodic volunteers to the same team; hence
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df + αd′f represents the maximal donation potential in a purely formal volunteer team. Should an

episodic volunteer make an appearance when volunteer staffing is already adequate, the organization

faces an overstaffing cost denoted by γ. However, the charity may still reap a net positive benefit if

the expected average donation from episodic volunteers manages to outweigh the overstaffing cost.

Theorem 2. Let xf,ℓ = 0 and both xf,u and xe,u be sufficiently large. We have the following two

cases:

(a) When df +αd′f ≥ γθ, then x∗
f = xf,u and x∗

e = 0 if and only if de is sufficiently small. Moreover,

there exists sufficiently large values of de and df such that x∗
f = xf,u and x∗

e = xe,u.

(b) When de > γ, then x∗
e = xe,u if and only if df is sufficiently small. Moreover, there exists suffi-

ciently large values of de and df such that x∗
f = xf,u and x∗

e = xe,u.

Theorem 2 indicates that when volunteering has a significant effect on at least one type of volun-

teer’s donations, the charity can still benefit from inviting an excess number of volunteers. Case (a)

holds when df + αd′f ≥ γθ. This is when the maximum donation amount in a team of only formal

volunteers (df +αd′f ) exceeds the cost of overstaffing (γθ). In this case, the charity has an incentive

to invite the maximum number of formal volunteers, x∗
f = xf,u. Moreover, when the episodic volun-

teers’ donation is small, the charity will not benefit from inviting any episodic volunteers because

their presence reduces the satisfaction of formal volunteers. Case (b) refers to when the episodic vol-

unteers’ average donation, de, covers their overstaffing cost. In this scenario, the charity can choose a

team composed solely of episodic volunteers. Although formal volunteers are more reliable and may

make additional donations if their presence is large enough to form a cohesive group relationship,

episodic volunteers can be the sole source of labor supply if their average donation covers the labor

cost caused by their random turnout. Lastly, Theorem 2 also states that if the average donation

of volunteers is sufficiently large for both types, then it is reasonable to team formal and episodic

volunteers together, even though this leads to a less satisfactory environment for formal volunteers.

Hence, despite the downside of episodic volunteers as pure labor suppliers, it is desirable for the

charity to benefit from this group of volunteers.

While Cases (a) and (b) are realistic for some tasks (e.g., fundraising drives), they may not hold

for all volunteering tasks in a typical charity. Hence, we consider the cases where df +αd′f <γθ and

de < γ. In these conditions, the effect of volunteering on donations is moderate, and so the charity

should carefully balance the cost and benefit of adding a new volunteer to the group. We define the

notation

ν :=
hℓβ+huγ−

√
β+ γ

√
de(h2

ℓ −h2
u)+h2

ℓβ+h2
uγ

hu −hℓ

,

Note that ν is composed of terms relating to only the episodic volunteer donation parameter, de,

turnout statistics, hℓ and hu, and labor cost parameters, β, and γ. We can interpret ν as the marginal
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value of an episodic volunteer to the charity (that will be further elaborated in Section 4.1). Therefore,

ν factors into the decision of whether SVdP prefers formal volunteers or episodic volunteers, as seen

in the following theorem.

Theorem 3. Suppose xf,ℓ = 0 and both xf,u and xe,u are sufficiently large. If df +αd′f < γθ and

de <γ, then a solution to (VS-J) is:

(a) If df + αd′f ≤ θν, then x∗
f = 0 and x∗

e =
(λ−θx∗f )

√
β+γ√

de(h2
ℓ−h2

u)+h2
ℓβ+h2

uγ
. The optimal value is J∗ = wλ+

λ(hℓβ+huγ−
√
β+γ

√
de(h2

ℓ−h2
u)+h2

ℓβ+h2
uγ)

hu−hℓ
.

(b) Otherwise, x∗
f = λ/θ and x∗

e = 0. The optimal value is J∗ =wλ+(d′fα+ df )
λ
θ
.

Observe that in Case (a) of Theorem 3, the optimal staffing decision is to invite only episodic

volunteers. This scenario underlines the fact that although episodic volunteers may be less efficient

and reliable compared to formal volunteers, they can be the optimal choice when their expected

donation outweighs both the labor loss incurred due to their unpredictable turnout and the maximum

possible donation from formal volunteers (i.e., df + αd′f ≤ θν). This finding stands in contrast to

Theorem 1, where formal volunteers are consistently preferred in the labor-only model (VS-L) due to

their superior reliability and labor efficiency. The closed-form expressions in Theorems 1 and 3 allow

us to understand how x∗
e is affected by the parameters under models (VS-L) and (VS-J). If the charity

invites x∗
f formal volunteers, then λ−θx∗

f is the total work that episodic volunteers need to fill. When

the charity is only concerned with work completion, Theorem 1 suggests that x̄e =
√
β+γ√

βh2
ℓ+γh2

u

episodic

volunteers is optimal, with the expected work they can produce as (hℓ+hu)
√
β+γ

2
√

βh2
ℓ+γh2

u

. Furthermore, x̄e

increases (resp., decreases) when β > γ (resp., β < γ). In contrast, Theorem 3 suggests that when

the charity considers the donation of its volunteers, the charity should invite more than x̄e due

to the potential donations from volunteers. Hence, when episodic volunteers are donors, then the

understaffing (overstaffing) cost must be adjusted up (down) by the donation amount.

4. Implications for process improvements

Given the closed-form solutions in Theorem 1 and Theorem 3, we next discuss several process changes

that improve a charity’s utility.

4.1. When and how can a charity rely on episodic volunteers?

A key question for charities is to understand when they should prefer episodic volunteers as their main

workforce. When only considering volunteers’ labor value, formal volunteers are clearly the preferred

group, due to their reliability and performance. Yet, if charities also consider monetary donations,

episodic volunteers could be preferred as the main workforce. In particular, from Theorem 2, we can

conclude that charities may prefer episodic volunteers when episodic volunteers’ average donation

is large enough to cover both the overstaffing cost and the understaffing cost caused by turnout

uncertainty.
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Further, from Theorem 3 where de < γ and df + αd′f < γθ, charities should only invite episodic

volunteers if the marginal value of episodic volunteers, ν, is larger than the maximum value provided

by formal volunteers, (df +αd′f )/θ. Note that the value of episodic volunteers decreases when labor

cost (γ or β) increases ( ∂ν
∂β

< 0 and ∂ν
∂γ

< 0). Simply put, although episodic volunteers do bring labor

value to complete a task, their net contribution to the charity decreases as labor value becomes

greater. When both labor costs (β and γ) are significant, it is optimal to invite only formal volunteers.

This can be observed in the dark shaded region of Figure 2a; Although the increase in the monetary

donation by episodic volunteers (de = $15) is greater than the largest possible increase by formal

volunteers (df +αd′f = $5), the benefit does not overcome the high expected cost from the uncertain

turnout of episodic volunteers. This observation brings us to the second element that should be

considered in this trade-off: the impact of episodic volunteers’ turnout uncertainty. We can consider

the disparity between hu and hℓ as the proxy of turnout uncertainty, and denote ϵ = hu
hℓ

as the

degree of uncertainty. Note that ϵ ∈ [1,∞) and equal to 1 when hu = hℓ. Under model (VS-J),

charities should only utilize episodic volunteers when the variance of episodic volunteers’ turnout

is small enough. Figure 2b demonstrates how the optimal staffing plan is affected by hu and hℓ

from Theorem 3. Note that the linear threshold that distinguishes the two policies is ϵ = hu
hℓ

=
(df+αd′f )

2+2(df+d′fα)βθ−(de(β+γ)+βγ)θ2

(df+αd′f )
2−2(df+d′fα)γθ+(de(β+γ)−βγ)θ2

(equivalent to df + d′fα = θν), which is the smallest disparity

between hu and hℓ where the optimal policy is to invite episodic volunteers. Therefore, when the

difference between hu and hℓ is larger than this threshold, the optimal policy is to only invite formal

volunteers.

We next discuss how ϵ impacts the charity’s utility. For (VS-L), the charity is worse off when ϵ

increases because ∂L∗

∂ϵ
< 0 in Theorem 1. For model (VS-J), under the conditions of Theorem 3, we

can also check that ∂J∗

∂ϵ
≤ 0, where the inequality is strict if de <γ. Hence, when only volunteers’ labor

value is considered (Theorem 1) or volunteers’ labor value is more significant than their donation

potential (Theorem 3), the charity is better off reducing the variability of episodic volunteers’ turnout

by either reducing either the no-show or over-show scenarios. To reduce overstaffing caused by

turnout uncertainty, charities may require volunteers to sign up each individual who is planning

to participate. Furthermore, research shows that understanding the value of the volunteering task

can strengthen volunteers’ psychological contract (Vantilborgh et al. 2012) that is likely to reduce

the chances of their no-shows. Therefore, charities may consider communicating the importance of

the task to volunteers, for example, through emails or text messages, to minimize the likelihood of

absenteeism.

4.2. Training programs for formal volunteers

A common practice adopted by charities is to provide additional training programs to their formal

volunteers. We analyze whether or not this practice is always beneficial. Consider a charity that is
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(a) Cost regions of problem (VS-J) in Theo-
rem 3

(b) Uncertainty set regions of problem (VS-
J) in Theorem 3

Figure 2 Region of costs (β and γ) and uncertainty set (µ and σ) that determine the optimal staffing strategy. In

both panels, we set hℓ = 0.1, hu = 1, θ= 1, α= 1, β = 30, γ = 30, de = 15 and df = d′f = 2.5.

only concerned with work completion when making staffing decisions. For example, volunteers at

health clinic charities or mental health charities are usually valued for their expertise and experience

with the job, not monetary donations. From Theorem 1, we can check that ∂L∗

∂θ
≥ 0, where the

inequality is strict if θ < λ/xf,u. So, the charity’s utility always increases with the efficiency level θ.

The intuition behind this is that if formal volunteers are more efficient, fewer episodic volunteers

need to be invited, which benefits the charity since the latter group introduces turnout uncertainty.

Therefore, the charity should invest in training and developing formal volunteers’ skills at completing

the tasks. However, once the efficiency level of formal volunteers is sufficiently high (i.e., θ≥ λ/xf,u),

the charity does not need episodic volunteers to complete the job. Further training will not yield

additional benefits to the charity and ∂L∗

∂θ
= 0.

Interestingly, if the charity is concerned with both work completion and monetary donations when

staffing jobs, additional training to formal volunteers could decrease the charity’s utility. When the

optimal solution is to only invite formal volunteers, then additional training always decreases the

charity’s utility since ∂J∗

∂θ
< 0. The intuition is that, as θ increases, the charity will need fewer formal

volunteers to complete the job, resulting in lower total donations for the invited volunteers. Similarly,

when the optimal solution is a mixture of formal and episodic volunteers, the charity can actually

be worse off by training its formal volunteers. The intuition is that, when formal volunteers become

more efficient, the charity will require fewer of both types of volunteers. Although this benefits work

completion due to having fewer (unreliable) episodic volunteers, this ultimately hurts the charity

due to a larger reduction in the charity’s future donations.
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5. Application: A case study of the Society of St. Vincent de Paul

With 800,000 members in 153 countries across six continents, the Society of St. Vincent de Paul

(SVdP) is an international humanitarian organization serving more than 30 million people globally.

Their services include feeding, clothing, housing, and healing individuals. With a volunteer-to-staff

ratio of 16 to 1, SVdP has nearly 100,000 trained volunteers across 4,400 communities in the U.S.

that together provided 12.6 million hours of volunteer services during 2017. Its largest division in the

U.S. is located in Phoenix, Arizona, where it serves homeless and low-income families with services

such as free medical and dental clinics, food warehouses, transition, and housing. Currently, SVdP

Phoenix has about 300 regular employees, over 2,500 active and associate members, and more than

6,000 volunteers. In 2019, SVdP used more than 705,400 volunteer hours and provided 2.6 million

meals to people in need. (Figure 3 shows examples of SVdP’s operations.)

(a) Pizza Friday (b) Dining Rooms

Figure 3 Examples for the most frequent volunteering tasks

To commence their volunteering at SVdP, individuals can register through the organization’s

online platform or by phone, selecting their areas of interest and indicating their available time slots

based on the location of the volunteer activities. Although most volunteer roles do not necessitate

a formal interview or comprehensive vetting process,5 the organization periodically offers optional

orientation sessions to acquaint prospective volunteers with the array of opportunities at hand.

Armed with this information, program managers carefully plan upcoming events and determine the

number of volunteers needed for each role. Personalized invitations for these pre-arranged tasks are

then sent out to volunteers. This well-organized method eliminates the usual complexities related to

volunteer-to-task matching that some organizations face. For those volunteers wishing to extend their

engagement with SVdP, the process is simple: they just need to contact the volunteer coordinator to

update their availability. Before the advent of the COVID-19 pandemic, the system even allowed for

5Screening process is different for professional medical volunteers.
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Figure 4 Episodic volunteer turnout count histogram and density graph on 54 consecutive “Meal Service” events.

The red curve line represents the density curve, and the blue dotted line represents the ideal number of

volunteers that is nine. Nearly half the time, more than 15 volunteers show up, highlighting a significant

over-show issue.

advance bookings, up to a year before the scheduled volunteer events. Nevertheless, as highlighted in

the Introduction, the no-show rate among episodic volunteers averages around 30%. Most absentees

either neglect to notify the coordinators or do so too late, making it impossible to find a last-minute

replacement. Consequently, understaffing poses a significant challenge, leading to unmet needs and

elevated operational costs. For example, when SVdP organizes events like “Pizza Friday” or “Dining

Rooms,” materials are prepared ahead of time. In the event of a labor shortage, these pre-allocated

resources go to waste, and SVdP falls short in providing meals to those it aims to serve. SVdP has also

been dealing with the challenge of overstaffing because episodic volunteers often spontaneously invite

friends or family to join them without notifying the charity in advance. As a result, management

now requires individual volunteer sign-ups and only reveals location assignments a day before events.

However, overstaffing issues persist. Figure 4 illustrates this challenge by showing that the number

of attendees often far exceeded the ideal team size of 9. In response, SVdP primarily invites formal

volunteers, filling remaining spots with episodic ones. (This established approach serves as the “base”

policy in our numerical experiments.)

5.1. Lack of data, and distributionally robust optimization

Although the closed-form solutions provided by Equations (VS-L) and (VS-J) offer straightforward

policies and managerial insights, charities can further improve their staffing practices if they collect

and utilize volunteer data. However, as highlighted in the Introduction, data quality remains a

challenge in volunteer management across charities. Prior to March 2018, SVdP’s data collection

was markedly subpar. Even recent data from 2018 to 2020 reveals substantial issues: nearly 40%

of all records contain errors, complicating any reliable analysis. SVdP datasets, for instance, suffer

from manual entry errors, such as an incorrect entry of “no-show” or “confirmed” status. The
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net result is a loss of accurate volunteer records. We, therefore, adopted a distributionally robust

optimization (DRO) approach, which obviates the need to specify a distribution for the unpredictable

volunteer no-shows. This approach is well-suited for the inherently unpredictable nature of volunteer

attendance. Note that even if SVdP had perfect data, predicting a volunteer’s likelihood to attend

remains an uphill battle due to the numerous unknown variables affecting their decision. Further

complicating matters is the fact that most variables that could help predict volunteer turnout—such

as age, gender, or address—are either self-reported, non-mandatory, or often erroneous. Additionally,

episodic volunteers, who make up an average of 84% of SVdP’s volunteer base, pose particular

challenges for data collection and prediction. Therefore, the volunteer invitation policy is largely

shaped by task requirements and generalized historical data rather than precise predictive analytics.

The DRO approach was popularized by Scarf (1958) for the classical newsvendor model, where

the objective was to choose a solution that maximizes the worst-case expected profit over the set of

distributions with mean µ and standard deviation σ. We will adopt a DRO approach for the charity’s

volunteer management problem, where the optimal volunteer plan is guaranteed to be robust against

all possible distributions, as it is optimized based on the worst-case scenario among all distributions.

Recall that H represents the random turnout proportion. The DRO approach leverages imperfect

historical data and conservatively assumes the first- and second-moment information without spec-

ifying the distribution family. Moreover, the simple information required can be supplemented and

corrected by volunteer managers who have a good sense of the popularity of the volunteer task and

volunteers’ reliability. In this way, charities’ decisions are protected against unobserved shocks. Let

p : [0,∞] 7→ R+ be the probability density function of H. We use Ep[·] to denote the expectation

under distribution p. We let µ and σ denote the mean and standard deviation of H. We also assume

that H is non-negative and has bounded support, where hℓ and hu are the lower and upper bounds,

respectively (0≤ hℓ <hu). Hence, p must belong to the distribution set:

P :=

p : [hℓ, hu] 7→R+ :
Ep[1] = 1
Ep[H] = µ
Ep[H

2] = µ2 +σ2

 . (6)

In this context, P denotes the set of all probability distributions with support within the interval

[hℓ, hu], characterized by a mean of µ, and a variance of σ2. Therefore, a DRO solution to the

volunteer staffing problem can be formulated as follows:

J∗
DRO := max

x∈X
JDRO(x) := max

x∈X
inf
p∈P

Ep[L
x(Hxe, xf )+Mx(Hxe, xf )]. (DRO-J)

Similar to Equation (VS-J), the (DRO-J) is neither convex nor concave. Unlike Equation (VS-J),

however, the objective function J∗
DRO transforms the problem into a max-min formulation, signif-

icantly elevating its computational complexity. In fact, the inner problem of J∗
DRO is a piecewise
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function with up to thirty-two subdomains of X . However, for a fixed x, the value of JDRO(x) can

found efficiently using convex optimization techniques since it can be reformulated as a second-order

cone program. Hence, we can solve (DRO-J) using grid search where each iteration solves a convex

optimization model. A detailed description of the reformulation is deferred to Section C. In our

numerical experiments, this distributionally robust approach is referred to as the “DRO” policy.

5.2. Numerical experiments

Four of SVdP’s primary volunteer engagements include the Family Evening Meal (FEM), Build-

ing Temporary Shelter (BTS), Fundraising (FUN), and Resource Center (REC) initiatives. Each

of these events exhibits unique characteristics in terms of labor uncertainty, cost implications, and

operational requirements. A nuanced understanding of each event’s unique requirements and chal-

lenges informs our broader analysis and recommendations for volunteer management at SVdP. The

Family Evening Meal (FEM) aims to alleviate hunger by preparing and serving meals in one of

SVdP’s dining centers. Based on our consultations with volunteer managers at SVdP, FEM incurs

substantial costs for both understaffing and overstaffing. While it is imperative to have sufficient

volunteers to meet the demand for meals, the space constraints of the dining center limit the num-

ber of volunteers that can be accommodated, leaving any surplus volunteers underutilized. Building

Temporary Shelter (BTS) is another crucial initiative, particularly given Phoenix’s extreme weather

conditions. During this event, volunteers collaborate to construct temporary heat relief shelters and

offer additional support to residents. Similar to FEM, BTS experiences high understaffing costs; the

time-sensitive nature of shelter provision means any delays could negatively impact beneficiaries.

However, overstaffing costs are minimal, given the multi-faceted and ongoing nature of the work

involved. Thirdly, SVdP hosts specialized Fundraising (FUN) events, which are characterized by

low overstaffing costs. Volunteers are dispersed across multiple locations to solicit donations and

can operate independently, thus reducing the likelihood of redundancy. Lastly, the Resource Cen-

ters (REC) provide a sanctuary for individuals in precarious situations, such as those experiencing

homelessness. These centers offer an array of services including showers, clothing, counseling, and

referrals. Given the diverse range of tasks and the necessity for adequate volunteer coverage, we

posit that REC encounters low overstaffing costs but significant understaffing costs.

The summary statistics for various volunteer tasks are shown in Table 1. We calculated the

value of w based on the compensation provided to paid staff for completing each respective task.

The understaffing cost, β, incorporates both w and the cost of essential materials. Additionally,

we established lower and upper bounds for the number of formal volunteers per event, guided by

the range observed in SVdP’s data. The overstaffing cost, γ, can be approximated by assessing

its influence on future volunteer participation. For instance, if a volunteer perceives an excess of

volunteers at an event, diminishing their role, it reduces the likelihood of them returning as a
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Table 1 Summary statistics for the sampled tasks

Volunteer task Instances λ µ σ2 hℓ hu xf,l xf,u w β γ

Family Evening Meal (FEM) 93 25 0.85 0.06 0.3 1.2 5 15 20 30 [10,20]

Building Temporary Shelter (BTS) 31 20 0.67 0.05 0.5 1 5 15 30 45 [5,10]

Fundraising (FUN) 19 50 0.65 0.08 0.5 1.2 5 10 20 25 [5,10]

Resource Center (REC) 55 15 0.62 0.04 0.4 1.5 2 5 30 40 [5,10]

volunteer or making a monetary contribution in the future. Rather than utilizing fixed numerical

values for overstaffing costs, we consider a range for γ ∈ [10,20], corresponding to a critical ratio

range from 60% to 75%, and then randomly draw 100 instances. Each unique pair of (β,γ) serves

as a distinct observation for the computational experiment. Owing to the paucity of available data,

we rely on the expertise of SVdP’s volunteer managers to estimate the uncertainty surrounding

volunteer turnout, represented by µ and σ.

To conduct a numerical assessment of the efficacy of our proposed solution, we first set a benchmark

by examining SVdP’s conventional volunteer scheduling methodology. Aforementioned, volunteer

managers at SVdP give precedence to formal volunteers for all assignments, employing episodic

volunteers only to address any shortfall. We term this established heuristic as “Base.” As suggested

by a reviewer, we introduce an additional heuristic grounded in the classic newsvendor model,

which is modified to account for the nuances of donations. This modified approach, referred to

as NVD (Newsvendor with Donations), simplifies the VS-J model by retaining the concavity of

newsvendor model. Importantly, it also accounts for the potential impact of volunteers’ donations.

The re-calibrated understaffing cost for episodic volunteers, denoted by β′, incorporates three distinct

elements: the original labor shortage cost β, the contributions from episodic volunteers de, and

supplemental donations from formal volunteers ascribed to their sense of group identity d′f , and

β′ = β+ de − d′f . Put differently, when an episodic volunteer is absent, the charity not only incurs a

labor shortage cost but also forgoes the average donation typically contributed by episodic volunteers.

This absence may also lead to an uptick in donations from formal volunteers, owing to a stronger

sense of group identity when the team is composed primarily of formal volunteers. On the flip side,

the redefined overstaffing cost, denoted by γ′, consists of two facets: the original overstaffing cost

and a potential reduction in donations from formal volunteers (i.e., γ′ = γ + d′f ), attributable to

the heightened presence of episodic volunteers. It is worth noting that within the framework of

the newsvendor model, the charity will invariably prioritize formal volunteers initially, a strategy

congruent with the “Base” policy traditionally employed by SVdP. However, the NVD approach

extends this by thoughtfully incorporating the variable of potential donations. Moreover, we make

the assumption that the turnout of episodic volunteers is uniformly distributed when employing the

NVD policy.
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Next, we compare the optimality gaps of these two heuristic policies and our proposed uniform

(UNF) as well as DRO policies under four distributions; truncated normal (TN), uniform (UN),

u-quadratic (UQ), shifted beta (B). All distributions use the same support, with the TN and B

distributions incorporating additional first and second moment information. To provide a benchmark

for all policies, we consider a clairvoyant solution assuming that full information about the specific

distribution F is known. The utility value of the clairvoyant policy is the upper-bound, denoted

as J∗
F . Next, we calculate the expected value using our three established policies JBase, JNVD, JUNF

and JDRO and the optimality gap represents the performance of each policy. We consider de = $4.6,

df = $2.35 and d′f = $1.5.6 We assume formal volunteers’ efficiency level is θ= 1.2 and α= 1.

All numerical examples are implemented in Matlab. The inner problems (SOCP problem) are

solved with cvx package in Matlab. On average, each problem takes 230 seconds to solve on a 1.8

GHz 4-Core Intel Core i7 processor.

We ascertain the average optimality gap between J∗
F and JBase, JNVD, JUNF and JDRO across

diverse tasks. For every observation, solutions are generated according to the four distinct policies,

thereafter tested under four distributions. Their overarching performance is also evaluated by taking

the weighted average of the optimality gap across all four distributions. Table 2 summarizes the

mean and standard deviation of the optimality gap of the policies for 16 experimental conditions

(combinations of four volunteering tasks and four distributions). The policy bearing the lowest

optimality gap for each experimental condition is accentuated (in blue and bold font). Using the Base

policy performance as the benchmark, we evaluated the policies by calculating the median difference

in optimality gap across 1600 instances (with 100 instances for each experimental condition).7 We

discern a significant enhancement in performance when charities duly account for the donation value

of volunteers. The combined labor and donation values increased by a median value of 6.41% upon

juxtaposing the Base policy with the UNF policy. This underscores the opportunity cost incurred

6We estimate the donations from the data shared by SVdP. First, we categorized individual volunteers into two
types: Formal and Episodic volunteers. Hustinx et al. (2008) specify episodic volunteers as those who has showed up
less than once a month. Likewise, volunteer managers in SVdP use participation frequency and volunteering lifetime
(duration between first and last volunteering event) as the distinguishing criteria. They consider those who have
participated frequently and have volunteered more than six months as formal volunteers. According to volunteering
data and given the fact that some formal volunteers “leave” the charity, we adopt both definitions and strictly define
those who have participated at least 24 times and volunteering lifetime at least 6 months as formal volunteers. Then, we
matched the volunteering data with donations. We find that episodic volunteers on average donate $18.6 per volunteer
event, and formal volunteers on average donate $15.6 per attendance. To estimate the impact of one’s volunteering
on her subsequent donations, we use the identified individuals who had registered to volunteer at SVdP but never
donated before (N = 13,511). Comparing the donation amount between those who registered and showed up and those
who registered but did not show up, we found that individuals who completed their volunteering service donated, on
average, $16.4 (SD = 286.8), while those who did not show up donated, on average, $8.3 (SD = 105.4). This 49.4% loss
is statistically significant at p≤ 0.1 level. Last, we estimate the donation increase due to volunteering by applying 49.4%
to both values. Therefore, episodic volunteers on average donate $9.2 per volunteering event while formal volunteers
on average donate $7.7 per attendance. To be more conservative, we took another 50% off from the estimated value.

7If we exclude the Uniform distribution condition, leaving us with 1200 instances, the median performance improve-
ment is 4.94% for the UNF policy and 10.60% for the DRO policy.
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when charities solely reckon the labor value of volunteers and overlook their potential donation

values.

Furthermore, the DRO policy demonstrates a median increase of 8.87% in the charity’s utility.

This strong performance is particularly notable, as the DRO policy consistently exhibits the lowest

optimality gap in seven out of the sixteen conditions and secures the overall lowest optimality gap in

two out of the four volunteering tasks. This underscores the merits of a robustness-centered approach.

Additionally, the optimality gap of DRO showcases a narrow range, signifying that the DRO policy

stands as a distribution-agnostic strategy that assures commendable performance under a variety

of distributions. A more vivid illustration of the robustness value is depicted in Section 5.2, which

presents a violin chart of the optimality gap for all volunteering tasks. The skewed values of the

DRO policy delineates a clear advantage in circumventing severe operational deficits.

Thirdly, the optimality gap for the informed newsvendor model (NVD) can be significant for

the FUN and REC tasks. This occurrence stems from the newsvendor structure’s balance between

understaffing and overstaffing costs, operating under the assumption that an excess of volunteers

is undesirable. Nonetheless, when volunteers’ donations are taken into account, it may transpire as

optimal for charities to extend invitations to a greater number of volunteers, even if it engenders

overage situations (e.g., FUN events). Despite this, the NVD policy can outperform other policies

in the FEM task, wherein both understaffing and overstaffing costs far exceed the donation values.

Lastly, we compare the staffing choices of Base, NVD, UNF, and DRO. The average count of formal

and episodic volunteers enlisted by each policy is illustrated in Table 2. A notable augmentation in

the number of episodic volunteers is observed when accounting for both labor and donations (UNF,

DRO), as compared to considering solely labor (Base), reaffirming our inference that a heightened

reliance on episodic volunteers is prudent when contemplating volunteers’ donations.

Each of the four evaluated policies has its own array of merits and challenges. For instance,

UNF exhibited strong performance in certain volunteering events where the underlying distribution

followed either a U-Quadratic or Truncated Normal distribution. We attribute this success to the

symmetric nature of these two distributions. In contrast, the DRO policy excelled particularly when

the underlying distribution became more irregular, as seen in the case of the Beta distribution.

The NVD heuristic also demonstrated noteworthy performance in several instances, especially when

formal volunteers were preferred or when labor costs were higher than donations. However, NVD’s

performance declined significantly when the episodic volunteers became more desirable (e.g., when

labor costs were lower). In summary, volunteer managers may choose to implement the UNF pol-

icy when they observe a consistent and stable volunteer turnout. Conversely, if volunteer turnout

becomes volatile, opting for the DRO policy may be more prudent. Similarly, when labor costs are

a primary concern for the charity, the NVD policy emerges as a dependable choice, offering reliable

performance under various circumstances.
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Table 2 Optimality Gap on 100 instances under four different distributions. The value in parenthesis is the

standard deviation. The “Overall” value is the weighted average optimality gap from four distributions. All values

are in percentage except for average xe and xf , which are in absolute numbers. For the conditions under uniform

distribution, we highlighted the second best solution since J∗
F = JUNF .

Volunteering Task Distribution and Policy Base NVD UNF DRO

FEM

TN 7.79 (2.93) 0.01 (0.00) 4.88 (2.17) 1.92 (0.19)
UN 22.2 (5.98) 3.11 (0.76) 0.00 (0.00) 12.04 (1.67)
UQ 25.83 (19.57) 19.39 (11.21) 17.72 (19.80) 21.93 (14.84)

BETA 3.32 (2.73) 0.98 (0.58) 8.21 (3.12) 0.22 (0.39)
Overall 12.27 (6.05) 3.05 (1.67) 5.64 (2.06) 6.23 (2.92)

Average xf 15.0 15.0 15.0 15.0
Average xe 8.0 9.7 10.8 8.8

BTS

TN 4.20 (3.35) 0.88 (2.85) 1.44 (1.65) 3.56 (4.68)
UN 6.62 (6.11) 3.93 (5.66) 0.00 (0.00) 1.52 (2.05)
UQ 12.45 (5.45) 7.19 (4.78) 4.30 (3.27) 1.02 (2.14)

BETA 26.58 (4.53) 19.38 (3.51) 23.64 (7.71) 0.02 (0.01)
Overall 12.69 (4.87) 8.04 (4.19) 7.68 (2.74) 1.49 (2.15)

Average xf 15.0 15.0 9.4 7.9
Average xe 3.0 3.3 16.3 21.0

FUN

TN 4.75 (2.46) 13.62 (0.14) 0.25 (0.37) 5.36 (3.90)
UN 4.19 (2.46) 9.10 (1.78) 0.00 (0.00) 5.04 (4.45)
UQ 12.13 (3.43) 22.77 (0.75) 3.06 (2.06) 2.25 (2.24)

BETA 52.6 (0.18) 70.05 (4.95) 34.21 (14.25) 0.05 (0.01)
Overall 19.46 (1.71) 30.11 (1.02) 10.19 (4.64) 3.05 (2.55)

Average xf 10.0 10.0 5.0 5.0
Average xe 58.5 52.4 75.9 88.0

REC

TN 8.68 (2.90) 30.19 (1.70) 3.62 (2.92) 4.83 (3.59)
UN 2.58 (2.79) 8.62 (3.02) 0.00 (0.00) 11.85 (10.26)
UQ 8.14 (4.31) 20.82 (3.15) 3.69 (1.73) 7.94 (8.19)

BETA 21.01 (3.11) 44.24 (1.54) 13.35 (6.32) 0.10 (0.10)
Overall 10.37 (3.14) 26.53 (0.49) 5.38 (2.80) 6.18 (5.51)

Average xf 5.0 5.0 3.1 2.0
Average xe 14.25 11.2 20.7 31.5

These policies also vary in terms of their practical ease of implementation. For instance, while

the DRO policy stands out with superior overall performance, charities might grapple with hurdles

related to tracking and collecting volunteers’ attendance data, potentially stemming from relation-

ship management intricacies or inadequate data infrastructure. In light of such challenges, the UNF

policy surfaces as a compelling alternative, situating itself as a robust second-best choice. On the

flip side, the NVD policy, with its facile implementation and intelligibility, presents a particularly

appealing option for charities. This policy seems especially apt for volunteering tasks mirroring the

dynamics of the FEM tasks, often laden with significant understaffing and overstaffing costs. At the

core, the efficacy of any chosen policy is firmly anchored on the bedrock of reliable data availabil-

ity and a nuanced understanding of volunteer behaviors, highlighting the importance of informed

decision-making in enhancing operational effectiveness within charitable domains.

5.3. Applications and Insights

We have engineered a user-friendly, Excel-based decision support tool that calculates the staffing

decisions under the policies used in our numerical experiments. This intuitive tool, accompanied

by preset examples, necessitates no advanced solver, thereby making it accessible for volunteer
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Figure 5 Performance evaluation of four policies for all volunteering tasks under four distributions. The figure

combines box-plot and violin chart to demonstrate both the median and distribution of the plots. As

expected, DRO policy is shorter in terms of optimality gap.

Figure 6 Decision tree: A general simplified process to determine workforce configuration

managers. It offers a visual conduit through which managers can seamlessly perceive how the opti-

mal policy morphs in response to varied parameters, and juxtapose multiple policies under specific

parameter sets. This interactive tool is designed not only to streamline decision-making but also

to illuminate the tangible impact of different policy choices, aiding managers in making informed,

strategic decisions in volunteer engagement and resource allocation.
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Although the DRO solution showcased its robustness against distribution uncertainty, the compu-

tational method could be difficult to incorporate into a charity’s existing processes since it requires

a convex optimization solver. Instead, we provided the charity with an interpretable decision model

(decision tree) that has been trained from the solution of 100,000 randomly generated instances8 of

constrained (DRO-J). The decision tree allows us to develop insights into how the parameters affect

the optimal solution. It is worth noting that this approach can also be tuned for a specific volun-

teering task, and hence generated prescriptive insights for charities. We removed instances where

the optimal policy is to invite overwhelming amount of volunteers (i.e., x∗
e = xe,u) because this only

represents less common cases (e.g., de > γ) and the insight is simple to conclude. Figure 6 presents

the decision tree, where the dark (light) shaded leaf nodes correspond to optimal solutions where

the formal volunteers are equal to the upper (lower) bound.

As shown in Figure 6, the factor that best splits the data is the magnitude of de, the effect of

volunteering on episodic volunteers’ donation. When de is small, it is optimal to admit the maximum

formal volunteers. The secondary factor is df +αd′f , the maximum donation from a formal volunteer.

When the df +αd′f is large, the optimal policy is to invite the maximum number of formal volunteers.

Otherwise, the optimal policy is to invite a minimum number of formal volunteers. Finally, the factors

that determine the optimal number of episodic volunteers are the average (µ) and standard deviation

(σ) of episodic volunteer turnout. When µ is low, it is optimal to select the maximum number of

episodic volunteers. On the other hand, when µ is large, it is optimal to invite the minimum or

moderate number of episodic volunteers, depending on σ. Specifically, a more extensive σ means a

lower number of episodic volunteers.

Another interesting insight is when the constraints are binding and xf,u <λ/θ. Under some condi-

tions (see Figure 6), the optimal number of formal volunteers is x∗
f = xf,u, so training these volunteers

does not impact the number of formal volunteers but decreases the episodic volunteers needed. If de

far exceeds d′f , the fewer episodic volunteers will have a negative net effect on the charity’s utility;

Although the formal volunteers will increase their donation due to the decrease in ρ (episodic-to-

formal volunteers ratio), it is not enough to compensate for the loss of monetary donation from the

fewer episodic volunteers. Accordingly, more experienced formal volunteers could crowd out other

volunteers’ participation, thus possibly decreasing the total monetary donation. This conclusion is

also confirmed by SVdP’s volunteers survey. For example, a volunteer commented “There is a couple

who had volunteered a couple of years before and they are clearly dedicated and generous volunteers.

Here’s the however: they arrive 90 minutes before the scheduled time and get the dining room set

8To generate these instances, we uniformly draw β,γ from [5,35], de from [0,35], df , d
′
f from [0,25], α, θ from [1,2],

hu (hℓ) is drawn from [0.25,0.45] ([0.9,1.1]), µ from [0.45,0.9], and σ from [0, σu] where σu =
√

(hu −µ)(µ−hℓ) is the
upper bound by Bhatia-Davis inequality. The lower and upper bound of formal volunteers (xf,l and xf,u) are draw
uniformly between [0, λhℓ/(αhu + θhℓ)] and [λhu/(αhℓ + θhu),

λ
θ
]. Last, we set λ= 50 and xe,u = λ

hℓ
.
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up and many tasks accomplished. While on one hand that is great, on the other, it means there

is nothing for others to do who arrive at the published start of the shift. I totally appreciate the

kind-hearts of the couple who arrive early, but also think it discourages other volunteers.” Since for-

mal volunteers have a longstanding relationship with the charity, they can also gain experience and

skills over time if they are assigned to repetitive tasks. Likewise, the charity could spend resources

creating challenging and rewarding volunteering tasks (so that formal volunteers’ efficiency does

not crowd out other volunteers) rather than training volunteers on existing work. Alternatively,

charities can position the experienced volunteers to take the leading role to guide other volunteers

instead of finishing the jobs by themselves. In addition, they can design tasks such that the total

demand is flexible (and so overstaffing cost will likely be small) such that formal volunteers will

not crowd out other volunteers’ experience. In short, charities should not exclusively concentrate

on enhancing the efficiency of their volunteers in completing tasks. Instead, they should consider

employing a range of strategies to effectively manage volunteering events. Ultimately, volunteering

is not merely an obligation of labor duty but also an opportunity to provide a meaningful charitable

giving experience.

6. Conclusion

This paper studies the volunteer staffing problem from a strategic perspective. To develop a nuanced

understanding of the actual situation, we collaborated with a large local social services organiza-

tion and consulted with a firm specializing in the nonprofit sector. Additionally, we delved into the

nonprofit and economics literature to gain insights from both the charities’ and volunteers’ perspec-

tives. Our proposed model considers two unique features in volunteer management. First, contrary

to the literature that assumes volunteers are homogeneous, we characterize volunteers based on

their turnout reliability and work performance. Second, we consider volunteers’ value in both labor

contribution and monetary donations, where the endogenous decision of team composition partially

influences monetary donation.

We study two variants of volunteer scheduling models; First, we present a labor-only objective

model (VS-L) that provides a baseline, which resembles charity’s current practice. Next, we present

VS-J model that considers volunteers’ labor and donations, but the model is more complex as it

is neither concave nor concave. We obtain closed-form expressions for both models by assuming a

uniform distribution of episodic volunteers’ turnout probability. Results show that although formal

volunteers are always preferred and prioritized in the VS-L model, episodic volunteers can serve as

the primary workforce when charity considers their monetary donations, too. Moreover, we obtain

additional insights regarding how the reliability of episodic volunteers influence the optimal policy

and generalize implications for process improvements.
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We also applied our model to various volunteering tasks within a social services organization.

Given the challenges related to data quality, we devised an additional method to derive an optimal

policy while accommodating distribution ambiguity. Our numerical experiments demonstrate that

charities can potentially reduce their profit loss by an average of 8.87% with our proposed DRO

policy compared to their existing scheduling process. It is important to note that, in some cases, there

is still significant room for improvement, even with the DRO approach. This underscores the crucial

role of a reliable data infrastructure, which can enhance both volunteer and donor management

for charities. Lastly, we created an intuitive Excel-based volunteer staffing tool and employed an

interpretable machine learning model to generate actionable insights in simple terms.

Finally, this study also paves the way for future research opportunities. For instance, while our

solution approach is tailored to address the data challenges commonly encountered by charities,

we firmly believe that a finely-tuned parametric model could outperform our solution as charities

establish more rigorous data collection processes. Secondly, enhancing the data collection process

itself presents an interesting and rewarding challenge. It is crucial for charities to maintain posi-

tive relationships with their volunteers during data collection. Consequently, future researchers can

explore methods to track attendance data in a friendly and non-intrusive manner.
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Figure 7 Subregions of L(x)

Appendix A: Proof of Theorem 1

Proof. Given the composite of volunteer mix (xe, xf ), equation VS-L has three subregions, as displayed in

Figure 7. We analyze each subregion separately.

L(x) =


wλ− γ(xe(

h0+hu
2

)+ θxf −λ)(hu−h0
hu−hl

)−β(λ− θxf − (h0+hl
2

)xe)(
h0−hl
hu−hl

), case (a): if hl <h0 <hu

wλ− γ(xe(
hl+hu

2
)+ θxf −λ), case (b): if h0 ≤ hl

wλ−β(λ− θxf − (hu+hl
2

)xe), case (c): if h0 ≥ hu

Case (a) In this region, we can check that the Hessian of L is negative semi-definite, and hence L(x) is jointly

concave in x. Analyzing the gradient

∇L(x) =

(
(β+ γ)(λ− θxf )

2 − (h2
l β+h2

uγ)x
2
e

2x2
e(hu −hl)

,
θ(β+ γ)(λ− θxf − (hl +hu)xe

(hu −hl)xe

)
,

we observe that ∇L(x) = 0 does not have a solution. Hence, the solution to maxxL(x), which we denote as

x∗ = (x∗
e, x

∗
f ), must lie on the boundary of region X. We will next derive the optimal value of xe (x∗

e) for a

given xf . The optimal x∗
e can be derived by solving the first order condition,

(β+γ)(λ−θxf )
2−(h2

l β+h2
uγ)x2

e

2x2
e(hu−hl)

= 0.

The optimal xe =
(λ−θx∗

f )
√
β+γ√

h2
l β+h2

uγ
. Therefore, the objective function value is as follows.

L(x∗
e, xf ) =wλ+

(λ− θxf )(hlβ+huγ−
√
(β+ γ)(h2

l β+h2
uγ)

hu −hl

Note that hlβ + huγ −
√
(β+ γ)(h2

l β+h2
uγ) < 0 since hlβ + huγ =

√
h2
l β

2 +h2
uγ

2 +2hlhuγβ <√
h2
l β

2 +h2
uγ

2 +(h2
l +h2

u)βγ =
√

(β+ γ)(h2
l β+h2

uγ). Therefore, L(x∗
e, xf ) increases in xf . So the optimal

x∗
f = x̄f =min{xf,u,

λ
θ
}, and the optimal objective function is L∗ =wλ+

(λ−θxf )(βhl+huγ−
√
β+γ

√
h2
l β+h2

uγ)

hu−hl
.

Cases (b) and (c) These two cases will not yield global optimal solutions. Note that the expected turnout

of episodic volunteers h is hl+hu

2
. In case (b) (c), the policy is to invite an insufficient (excessive) number of

volunteers and the charity is expected to have a shortage of volunteers (surplus). In either case, the charity

can improve its performance by increasing or decreasing the number of episodic volunteers it wants to invite.

Therefore, the local optimal solution of cases (b) and (c) can exist only on the line h0 = hl or h0 = hu.

Furthermore, L(x) = wλ− γ(xe
hl+hu

2
+ θxf − λ) when h0 = hl and L(x) = wλ− β(λ− xe

hl+hu

2
− θxf ) when

h0 = hu. In both cases, L(x) is linear in xf , so the optimal solution must be on the lines xf = 0 or xf = x̄f .

■
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Figure 8 Subregions of X

Appendix B: Proof of Theorem 2 and 3

Proof. Given the closed-form expression for J(x), we will solve equation VS-J that maximizes J(x) in the

feasible region X . Since xf,ℓ = 0 and xf,u ≥ λ/θ, the constraint xf ∈ [xf,ℓ, xf,u] in X is redundant. In total, we

have nine cases for the closed-form of J(x). We define the following regions of X :

Xe :=

{
x= (xe, xf )∈R×R : xf , xe ≥ 0, hf :=

αxf

xe

<hl

}
Xm :=

{
x= (xe, xf )∈R×R : xf , xe ≥ 0, hf :=

αxf

xe

∈ [hl, hu]

}
Xf :=

{
x= (xe, xf )∈R×R : xf , xe ≥ 0, hf :=

αxf

xe

>hu

}
These regions are illustrated in Figure 8 and labeled as ‘e’, ‘m’, and ‘f’. Note that all three regions Xe, Xm, and

Xf are polyhedra, as they are defined by linear constraints. If x∈Xf (x∈Xm, x∈Xe), then the closed-form

expression of J(x) corresponds to cases f(a)-f(c) (cases m(a)-m(c), e(a)-e(c)).

Given a subregion label ℓ, we will use Jℓ to refer to its closed-form expression. For example, if x∈Xm(a), then

J(x) = Jm(a)(x) where Jm(a)(x) := wλ− γ(xe(
h0+hu

2
) + θxf − λ)(hu−h0

hu−hl
)− β(λ− θxf − (h0+hl

2
)xe)(

h0−hl

hu−hl
) +

de(
hu+hl

2
)xe + dfxf + d′fxf (α− xe

xf
(
hf+hl

2
))

hf−hl

hu−hl
. We similarly define functions Je(i), Jm(i) and Jf(i) for i ∈

{a, b, c}.

Our goal is to find the global maximizer of J(x) among all subregions of X . Hence, to solve the maximization

problem in equation VS-J, we should analyze the maximum of Je(·), Jm(·), and Jf (·), in all subregions of Xe,

Xm, and Xf , respectively. We solve the problem in two steps. In the first step, we will show that maximizing

J(x) over each subregion achieves a solution that is at the boundary of the subregion. In the second step, we

will compare the values of J on the boundary of each subregion to derive the optimal global solution.

Step 1: We will prove that the local maximizer of J within each subregion of Xe, Xm, and Xf is at the

boundary of the subregion. These boundaries are illustrated in Figure 8. We use the notation bd(X) to refer

to the boundary of a region X.

Subregion Xe(a). When hf < hl, the objective function becomes Je(a) = wλ− γ(hxe + θxf − λ)+ − β(λ−

hxe − θxf )
+ + dehxe + dfxf = L(x) + dehxe + dfxf . Since Je(a) only has two more linear terms in addition
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to L, we must have ∇Je(a) =∇L= 0, and the optimal solution to maxx∈Xe(a)
J(x) must lie on the boundary

bd
(
Xe(a)

)
.

Subregion Xm(a). When hf ∈ [hl, hu], the objective becomes:

E[Jm(a)] =E
[
wλ− γ(hxe + θxf −λ)+ −β(λ−hxe − θxf )

+ + dehxe + dfxf + d′fxf (α− hxe

xf

)+
]

=wλ− γ(xe(
h0 +hu

2
)+ θxf −λ)(

hu −h0

hu −hl

)−β(λ− θxf − (
h0 +hl

2
)xe)(

h0 −hl

hu −hl

)

+ de(
hu +hl

2
)xe + dfxf + d′fxf (α− xe

xf

(
hf +hl

2
))
hf −hl

hu −hl

Next, the second-order derivative and cross partial derivative are as follow:
∂2E(Jm(a))

∂x2
e

=
d′
fx

2
fα

2−(β+γ)(λ−θxf )
2

x3
e(hu−hl)

,
∂2E(Jm(a))

∂x2
f

=
d′
fα

2−(β+γ)θ2

xe(hu−hl)
, and

∂2E(Jm(a))

∂xf∂xe
=

−d′
fxfα

2−(β+γ)θ(λ−θxf )

x2
e(hu−hl)

. Moreover,

det(H(E(Jm(a)))) =−d′
fα

2(β+γ)λ2

x4
e(hu−hl)2

< 0

Since the determinant of the Hessian is always negative, the solution of maxx∈Xm(a)
J(x) is at the boundary

bd
(
Xm(a)

)
.

SubregionXf(a).When hf >hu, the objective function becomes Jf(a) =wλ−γ(hxe+θxf −λ)+−β(λ−hxe−

θxf )
++dehxe+dfxf +d′fxf (α− hxe

xf
) =L(x)+dehxe+dfxf +d′fxf (α− hxe

xf
). Since Jf(a) only has three more

linear terms in addition to L, we must have ∇Jf(a) =∇L= 0, and the optimal solution to maxx∈Xf(a)
J(x)

must lie on the boundary bd
(
Xf(a)

)
.

SubregionXe(b).When hf <hl, the objective function becomes Je(b) =wλ−β(λ−hxe−θxf )+dehxe+dfxf .

Since Je(b) has a linear objective function, the optimal solution to maxx∈Xe(b)
J(x) is always at the extreme

points.

Subregion Xm(b). When hl <hf <hu, the objective function becomes:

E[Jm(b)] =wλ−β(λ−hxe − θxf )+ dehxe + dfxf + d′fxf (α− hxe

xf

)

=wλ−β(λ−xe(
h0 +hu

2
)− θxf )+ de(

hu +hl

2
)xe + dfxf + d′fxf (α− xe

xf

(
hf +hl

2
))
hf −hl

hu −hl

Next, the second-order derivative and cross partial derivative are as follows:
∂2E(Jm(b))

∂x2
e

=
d′
fx

2
fα

2

x3
e(hu−hl)

,
∂2E(Jm(b))

∂x2
f

=
d′
fα

2

xe(hu−hl)
, and

∂2E(Jm(b))

∂xf∂xe
=

−d′
fxfα

2

x2
e(hu−hl)

. Since ∇E(Jm(b)) = 0, the optimal solution to

maxx∈Xm(b)
J(x) must be in the boundary bd

(
Xm(b)

)
.

Subregion Xf(b). When hf > hu, the objective function becomes Jf(b) = wλ− β(λ− hxe − θxf ) + dehxe +

dfxf + d′fxf (α− hxe

xf
). Since Jf(b) is linear, the optimal solution to maxx∈Xf(b)

J(x) is always at the extreme

points.

Subregion Xe(c).When hf <hl, the objective function becomes Je(c) =wλ−γ(hxe+θxf −λ)+dehxe+dfxf .

Since Je(c) has a linear objective function, the optimal solution to maxx∈Xe(c)
J(x) is always at the extreme

points.

Subregion Xm(c). When hl <hf <hu, the objective function becomes:

E[Jm(c)] =wλ− γ(hxe + θxf −λ)+ dehxe + dfxf + d′fxf (α− hxe

xf

)

=wλ− γ(xe(
hl +hu

2
)+ θxf −λ)+ de(

hu +hl

2
)xe + dfxf + d′fxf (α− xe

xf

(
hf +hl

2
))
hf −hl

hu −hl
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Since ∇E(Jm(c)) = 0, the optimal solution to maxx∈Xm(b)
J(x) must lie on the boundary bd

(
Xm(c)

)
.

Subregion Xf(c). When hf > hu, the objective function becomes Jf(c) = wλ− γ(hxe + θxf − λ) + dehxe +

dfxf + d′fxf (α− hxe

xf
). Since Jf(c) is linear, the optimal solution to maxx∈Xf(c)

J(x) is always at the extreme

points.

Step 2: Next, we analyze the value of J(x) on the candidate optimal solutions identified in Step 1. Note that

these candidate solutions are the boundaries of the subregions in Xe, Xm, and Xf in Figure 8. In this step,

we further eliminate boundaries as candidate solutions.

Boundary lines bd(Xm(a))∩bd(Xe(a)) and bd(Xm(a))∩bd(Xf(a)).

∂E(Jm(a))

∂xf

= df +
d′fα(xfα−hlxe)+ θ((β+ γ)(λ−xfθ)−hlxeβ−huxeγ)

xe(hu −hl)

∂E(Je(a))

∂xf

= df +
θ((β+ γ)(λ−xfθ)−hlxeβ−huxeγ)

xe(hu −hl)

∂E(Jf(a))

∂xf

= df + d′fα+
θ((β+ γ)(λ−xfθ)−hlxeβ−huxeγ)

xe(hu −hl)

If the optimal solution lies on the boundary line bd(Xm(a))∩ bd(Xe(a)), then we must have
∂E(Je(a))

∂xf
> 0 and

∂E(Jm(a))

∂xf
< 0. However,

∂E(Jm(a))

∂xf
>

∂E(Je(a))

∂xf
in Xm(a).

Similarly, if the optimal solution lies on the boundary line bd(Xm(a)) ∩ bd(Xf(a)), then we must have
∂E(Jf(a))

∂xf
< 0 and

∂E(Jm(a))

∂xf
> 0. However,

∂E(Jm(a))

∂xf
<

∂E(Jf(a))

∂xf
in Xm(a). Therefore, the optimal solution

cannot exist on these two boundary lines.

Boundary lines bd(Xm(b))∩ bd(Xe(b)) and bd(Xm(b))∩bd(Xf(b)).

∂E(Jm(b))

∂xf

= df +βθ+
d′fα(xfα−hlxe)

xe(hu −hl)

∂E(Je(b))

∂xf

= df +βθ

∂E(Jf(b))

∂xf

= df + d′fα+βθ

If the optimal solution lies on the boundary line bd(Xm(b))∩ bd(Xe(b)), then we must have
∂E(Je(b))

∂xf
> 0 and

∂E(Jm(b))

∂xf
< 0. However,

∂E(Jm(b))

∂xf
>

∂E(Je(b))

∂xf
in Xm(b).

Similarly, if the optimal solution lies on the boundary line bd(Xm(b)) ∩ bd(Xf(b)), then we must have
∂E(Jf(b))

∂xf
< 0 and

∂E(Jm(b))

∂xf
> 0. However,

∂E(Jf(b))

∂xf
>

∂E(Jm(b))

∂xf
in Xm(b). Therefore, the optimal solution cannot

exist on these two boundary lines.

Boundary lines bd(Xm(c))∩bd(Xe(c)) and bd(Xm(c))∩bd(Xf(c)).

∂E(Jm(c))

∂xf

= df − γθ+
d′fα(xfα−hlxe)

xe(hu −hl)

∂E(Je(c))

∂xf

= df − γθ

∂E(Jf(c))

∂xf

= df + d′fα− γθ

If the optimal solution lies on the boundary line bd(Xm(c))∩ bd(Xe(c)), then we must have
∂E(Je(c))

∂xf
> 0 and

∂E(Jm(c))

∂xf
< 0. However,

∂E(Jm(c))

∂xf
>

∂E(Je(c))

∂xf
in Xm(c).
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Similarly, if the optimal solution lies on the boundary line bd(Xm(c)) ∩ bd(Xf(c)), then we must have
∂E(Jf(c))

∂xf
< 0 and

∂E(Jm(c))

∂xf
> 0. However,

∂E(Jf(c))

∂xf
>

∂E(Jm(c))

∂xf
in Xm(c). Therefore, an optimal solution cannot

exist on these two boundary lines.

Boundary lines h0 = hl (bd(Xm(c))∩ bd(Xm(a))) and h0 = hu (bd(Xm(b))∩ bd(Xf(a))).

Since Je(b), Jf(b), Je(c), Jf(c) all have linear objective functions, the maxima of these regions must reside at

the extreme points. Furthermore, the objective functions of the lines Xm(c)∩Xm(a) and Xm(b)∩Xm(a) are

convex. On the line h0 = hl, the second-order derivative of
∂2Jm(a)

∂x2
f

=
d′
fhlα

2λ2

(hu−hl)(λ−θxf )3
> 0. On the line h0 = hu,

the second order derivative of
∂2Jm(a)

∂x2
f

=
d′
fhuα2λ2

(hu−hl)(λ−θxf )3
> 0. Therefore, both objective functions are convex in

xf and the maxima must be on the boundary. Last, since we already proved that the optimal solution will not

be on the line hf = hl or the line hf = hu, the maxima can only exist on xe = 0, xf = 0.

Boundary lines xe = 0 and xf = 0.

First, when xe = 0, the objective function becomes deterministic, and the optimal solution and objective

functions are x∗
f = λ/θ and J(0, λ/θ)] = wλ +

(df+αd′
f )λ

θ
when df + d′fα < θγ, and x∗

f = xf,u, J(0, xf,u)] =

(df +αd′f )xf,u − γ(θxf,u −λ) otherwise.

Second, when xf = 0, the objective function becomes: E[J(xe,0)] =wλ−γ(hxe−λ)+−β(λ−hxe)
++dehxe.

The optimal solution is x∗
e = x∗

e,1 =
λ
√

β+γ√
de(h

2
l −h2

u)+h2
l β+h2

uγ
when de ≤ γ, and x∗

e = xe,u otherwise. Note that the

condition for x∗
e,1 to hold is de <γ de <

h2
uγ+h2

l β

h2
u−h2

l
which could be greater than γ. The objective function Je(m)

is always dominated by Je(c) when de > γ. Therefore, x∗
e,1 cannot be the optimal solution when de > γ. The

objective function value of (x∗
e,1,0) is E[J(x∗

e,1,0)] = wλ+
λ(hlβ+huγ−

√
β+γ

√
de(h

2
l −h2

u)+h2
l β+h2

uγ)

hu−hl
= wλ+ λγ +

hl(β−γ)

hu−hl
−

√
β+γ

√
h2
l β+h2

uγ−(h2
u−h2

l )de

hu−hl
. The objective function of (xe,u,0) is E[J(xe,u,0)] = wλ− γ(hl+hu

2
xe,u −

λ)+ de
hl+hu

2
xe,u.

Boundary lines xe = xe,u and xf = xf,u.

On the line xe = xe,u and the line xf = xf,u, both Je(c) and Jf(c) are linear in (xe, xf ). Furthermore,

Jm(c) is convex in both xe and xf . Therefore, the optimal solution can only be among the following:

(xe,u, xf,u), (0, xf,u), (xe,u,0). The objective function of (xe,u, xf,u) can be either Jm(c) or Jf(c). If (xe,u, xf,u)∈

Xm(c), E[Jm(c)] = wλ− γ(xe,u(
hl+hu

2
) + θxf,u − λ) + de(

hu+hl

2
)xe,u + dfxf,u + d′fxf,u(α− xe,u

xf,u
(
hf+hl

2
))

hf−hl

hu−hl

where h0 =
λ−θxf,u

xe,u
and hf =

αxf,u

xe,u
. If (xe,u, xf,u) ∈ Xf(c), E[Jf(c)] = wλ − γ(hl+hu

2
xe,u + θxf,u − λ) +

de
hl+hu

2
xe,u + dfxf,u + d′fxf,u(α−

hl+hu
2

xe,u

xf,u
).

Conclusion:

Last, we compare the optimal conditions and objective values at each point to summarize the final results

in Table 3.

• When df < θγ − αd′f and de < γ, there are only two possible optimal solutions: (x∗
e,1,0), (0, λ/θ). The

optimal solution is (x∗
e,1,0) if ν =

(hlβ+huγ−
√
β+γ

√
de(h

2
l −h2

u)+h2
l β+h2

uγ)

hu−hl
> (df + αd′f )/θ, and the optimal

solution is (0, λ/θ) otherwise. This completes the proof for Theorem 3.

• when df < θγ − αd′f and de > γ, the optimal solution is (xe,u,0) if J(xe,u,0)> (df + αd′f )λ/θ, and the

optimal solution is (0, λ/θ) otherwise.

• when df > θγ − αd′f and de < γ, the only optimal solution is (0, xf,u) because J(0, xf,u)
∗ ≥

max(J(x∗
e,1,0), J(0, λ/θ)) always holds under this condition. First, J2(xf,u)

∗ ≥ J2(λ/θ) because df >
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Table 3 Solution for Uniform Distribution

df < θγ−αd′f θγ−αd′f ≤ df ≤ θγ df > θγ

de < γ (x∗
e,1,0) or (0,

λ
θ
) (0, xf,u)

de > γ (xe,u,0) or (0,
λ
θ
) (xe,u,0) or (0, xf,u) (xe,u, xf,u) or (0, xf,u)

θγ−αd′f . Second, note that J1(x
∗
e,1) is monotone increasing in de and reaches the maximum value when

de =
h2
uγ+h2

l β

h2
u−h2

l
. Substituting the value into J(x∗

e,1,0), we have J(x∗
e,1,0) = wλ+ λ(hlβ+huγ)

hu−hl
≤ wλ+ γλ.

Next, note that J(0, xf,u) = wλ + (d′fα + df − γ)xf,u + λγ ≥ wλ + γλ ≥ J1(x
∗
e,1) when d′fα + df ≥ γ.

Therefore, when d′fα+ df ≥ γ and de <γ, J(0, xf,u)
∗ ≥ J(x∗

e,1,0) always hold.

• When de >γ and df > θγ−αd′f , the policy (x∗
e,1,0) is not feasible and the policy (0, λ/θ) always results

in a lower value than (0, xf,u). When df > θγ, there are two possible optimal policies: (xe,u, xf,u) or

(0, xf,u). The optimal solution is (xe,u, xf,u) if J(xe,u, xf,u) > J(0, xf,u) and the optimal solution is

(0, xf,u) otherwise. Last, when df ∈ (θγ−αd′f , θγ), there are also two possible optimal policies: (xe,u,0)

and (0, xf,u). The optimal solution is (xe,u,0) if J(xe,u,0)>J(0, xf,u) and the optimal solution is (0, xf,u)

otherwise.

■

Appendix C: DRO solution - Computational method.

Recall Jx(y, z) := Lx(y, z) + Mx(y, z). To develop our solution approach, we will utilize the fact that, for

a given x, the moment problem JDRO(x) = infp∈P Ep[J
x(Hxe, xf )] is a semi-infinite linear program since

p : [hℓ, hu] 7→ ℜ+ can be viewed as a vector of infinitely many decision variables. The dual of the moment

problem is:
max
t,s,r

t+µs+(µ2 +σ2)r

s.t. t+hs+h2r≤ Jx(hxe, xf ), h∈ [hℓ, hu]
(7)

This is also a semi-infinite linear program but with infinite constraints. We will show that for a fixed x, the

dual can be cast as a second-order cone program (SOCP) that can be solved tractably using commercial

off-the-shelf solvers such as CVX. Hence, to solve (DRO-J), we can use grid search on X where, for each grid

point x, we solve an SOCP.

Next, we derive the SOCP formulation given x. Note that Jx(hxe, xf ) is a piecewise-linear function in

h ∈ [hℓ, hu] with two breakpoints, h0 := (λ− θxf )/xe and hf := (αxf )/xe. To simplify our exposition, assume

that h0 <hf and that both breakpoints lie in [hℓ, hu]. (The technique can be easily adapted for other cases.)

Hence, the dual problem is equivalent to the following:

max
t,s,r

t+µs+(µ2 +σ2)r

s.t. t+hs+h2r≤ a1 + b1h, ∀h∈ [hℓ, h0],

t+hs+h2r≤ a2 + b2h, ∀h∈ [h0, hf ],

t+hs+h2r≤ a3 + b3h, ∀h∈ [hf , hu]

(8)

where ai, bi, ci for i= 1,2,3 are appropriately defined from the functional form of Jx(hxe, xf ) in each of the

subdomains of [hℓ, hu].
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Through a sequence of reformulations, we can cast each of the three constraint groups in (8) as a second-

order cone constraint. We demonstrate this technique in the first constraint group. First, we apply the S-lemma

(Polik and Terlaky 2007).

Lemma 1 (S-lemma, Polik and Terlaky 2007). Let qa, qb : Rn 7→ R be quadratic functions. Suppose

there exists h̄ ∈ Rn such that qa(h̄) > 0. Then the implication [qa(h) ≥ 0 =⇒ qb(h) ≥ 0] holds if and only if

there exists z ≥ 0 such that qb(h)≥ zqa(h) ∀h.

Define qa(h) := (h−hℓ)(h0−h) and qb(h) :=−rh2+(b1−s)h+(a1− t). Note that the first constraint group

can be equivalently reformulated as the implication [qa(h)≥ 0 =⇒ qb(h)≥ 0]. By S-lemma, this is equivalent

to the constraint that, there exists z1 ≥ 0 such that qb(h)− z1qa(h)≥ 0 for all h, or(
−r 1

2
(b1 − s)

1
2
(b1 − s) a1 − t

)
− z1

(
−1 1

2
(hℓ +h0)

1
2
(hℓ +h0) −hℓh0

)
⪰ 0.

We can reformulate the above semidefinite constraint using the following equivalence:

Claim 1. [4xy− z2 ≥ 0 and x≥ 0]⇐⇒ [x+ y≥
√

z2 +(x− y)2]

Hence, the first constraint group of (8) is equivalent to a second-order cone constraint:

−r+ z1 + a1 − t+ z1hℓh0 ≥
∥∥∥∥ b1 − s− z1(hℓ +h0)
−r+ z1(1−hℓh0)− a1 + t

∥∥∥∥
2

,

where z1 is a new non-negative decision variable. We can apply the sequence of reformulations to the remaining

constraint groups. Hence, the dual program is equivalent to a second-order cone program (SOCP) with variables

t, s, r and non-negative variables z1, z2, z3.

Note that the S-lemma is critical in reformulating JDRO(x) into a SOCP. The S-lemma can only be used

when u is piecewise-linear or piecewise-quadratic. However, we can approximate other forms of u (e.g., expo-

nential) using a piecewise-linear function. Hence, we can use our technique even under a general function u to

approximate the value of JDRO(x) by solving an SOCP.

■
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