
This article was downloaded by: [129.219.247.33] On: 22 April 2021, At: 04:44
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Manufacturing & Service Operations Management

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Prepositioning and Local Purchasing for Emergency
Operations Under Budget, Demand, and Supply
Uncertainty
Mahyar Eftekhar, Jing-Sheng Jeannette Song, Scott Webster

To cite this article:
Mahyar Eftekhar, Jing-Sheng Jeannette Song, Scott Webster (2021) Prepositioning and Local Purchasing for Emergency
Operations Under Budget, Demand, and Supply Uncertainty. Manufacturing & Service Operations Management

Published online in Articles in Advance 18 Mar 2021

.  https://doi.org/10.1287/msom.2020.0956

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2021, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/msom.2020.0956
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


MANUFACTURING & SERVICE OPERATIONS MANAGEMENT
Articles in Advance, pp. 1–18

http://pubsonline.informs.org/journal/msom ISSN 1523-4614 (print), ISSN 1526-5498 (online)

Prepositioning and Local Purchasing for Emergency Operations
Under Budget, Demand, and Supply Uncertainty
Mahyar Eftekhar,a Jing-Sheng Jeannette Song,b Scott Webstera

aW. P. Carey School of Business, Arizona State University, Tempe, Arizona 85287; b Fuqua School of Business, Duke University, Durham,
North Carolina 27708
Contact: eftekhar@asu.edu, https://orcid.org/0000-0002-6310-9025 (ME); jssong@duke.edu,

https://orcid.org/0000-0001-8908-2302 (J-SJS); scott.webster@asu.edu, https://orcid.org/0000-0002-4086-8088 (SW)

Received: June 5, 2019
Revised: February 4, 2020; July 21, 2020;
September 2, 2020
Accepted: September 11, 2020
Published Online in Articles in Advance:
March 18, 2021

https://doi.org/10.1287/msom.2020.0956

Copyright: © 2021 INFORMS

Abstract. Problem definition: Considering a mix of prepositioning and local purchasing,
common to cover humanitarian demands in the aftermath of a rapid-onset disaster, we
propose policies to determine preposition stock. These formulations are developed in the
presence of demand, budget, and local supply uncertainties and for single-items delivery.
Academic/practical relevance: The immediate period aftermath of a disaster is the most
crucial period during which humanitarian organizations must supply relief items to
beneficiaries. Yet, because of many unknowns such as time, place, and magnitude of a
disaster, supply management is a significant challenge, and these decisions are made
intuitively. The features and complexities we examine have not been studied in the lit-
erature.Methodology: We derive properties of the optimal solution, identify exact solution
methods, and determine approximate methods that are easy to implement. Results: We
(i) characterize the interplay of supply, demand, and budget uncertainties, as well as the
impact of product characteristics on optimal prepo stock levels; (ii) show in what con-
ditions the prepo stock is a simple newsvendor solution; and (iii) discuss the value of
emergency funds. Managerial implications: We show that budget level is a key deter-
minant of the optimal policy. When it is above a threshold, inventory increases in disaster
frequency and severity, but the reverse is true otherwise. When budget is limited, the rate
of savings from improved forecasts is amplified (attenuated) for critical (noncritical) items,
reflecting opposing directional effects of mismatch cost and cost of insufficient funding.
Our model can also be used to estimate the value of initiatives to mitigate constraints on
local spend (e.g., a line of credit underwritten by large donors that is available during the
immediate relief period).

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2020.0956.

Keywords: emergency relief operations • supply management policies • preposition stock • reactive stock

1. Introduction
This paper concentrates on the management of sup-
plies for the immediate relief period (IRP) of rapid-onset
natural disasters (e.g., earthquake, tsunami), which
every year affect around 160 million people world-
wide (World Health Organization 2020). The IRP is
the first and most crucial stage of an emergency re-
sponse, where life-saving efforts are the primary fo-
cus, and is succeeded by a maintenance and control
stage, where the situation stabilizes, and a recovery
stage. During this short period, the local infrastruc-
ture may be damaged, and the abilities of local actors
might be severely restricted. The humanitarian or-
ganizations’ (HOs’) main objective is quick response
and providing adequate supply of life-saving items
(e.g., water, sanitation, hygiene—also known as
WASH—food, shelter, and medicine). Yet, assurance
of adequate supply is highly challenging because of

the unpredictability of demand, financial limitations
(Balcik and Beamon 2008), and local supply uncer-
tainty (De la Torre et al. 2012). The purpose of this
paper is to develop an analytical framework that
accounts for the multiple uncertainties to aid hu-
manitarians’ decision making. Based on our intense
interactions with managers at a few large interna-
tional HOs, we synthesize the common practice and
then, develop a model to capture the special features
that managers face in practice. Considering uncer-
tainty in demand, local supply, and budget, we
characterize optimal inventory policy for a wide
range of scenarios. Furthermore, we compare our
results with those coming from a simple newsvendor
model to present a deeper theoretical discussion.

1.1. Practice
There are two common supplymanagement approaches
for the IRP. The first is proactive, under which HOs
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purchase relief items from international suppliers,
preposition this inventory (prepo stock) in strategi-
cally located distribution centers (Duran et al. 2011),
and ship the items to the affected areas only after disaster
strikes. World Vision International, for example, prep-
ositions relief items in four locations, from which the
items are packaged and transported anywhere in the
world within 72 hours. The Federal Emergency Man-
agement Agency has nine distribution centers to sup-
port the continental United States and its territories.
The World Food Program manages the United Nations
Humanitarian Response Depots in seven locations
where large HOs such as Catholic Relief Services (CRS),
the Cooperative for Assistance and Relief Everywhere
(CARE), and Oxfam store items.

The advantage of prepo stock is that HOs have
enough time to buy and store the selected relief items
at a low purchase price with assurance of quality.
However, because of the unpredictability of disasters,
it is nearly impossible to preposition the right items
at the right quantity. Also, in some situations, in-
ventory holding cost (including obsolescence and
opportunity cost of capital) can be high (Acimovic
and Goentzel 2016). Furthermore, to avoid delays,
HOs often have to transport items by air (e.g., if
ground transportation is more than a two-day transit
time to the affected area), which is very expensive.
An internal audit of four large international HOs
(i.e., CRS, CARE, Mercy Corps, and World Vision
International) revealed that ordering and purchasing,
shipment from suppliers to HO’s warehouses, and
warehousing costs consist of 50% of total supply
chain costs under a proactive approach (40%, 2%,
and 8%, respectively), whereas transportation cost
from the HO’s warehouse to an affected area makes
up 46% of the overall supply chain expenditures.1

Because of high transport costs, the total landed cost
(i.e., purchase, warehousing, and transport) is high.
Thus, although a proactive approach has been proven
successful for some organizations, it is overall an
extremely expensive approach (Kunz et al. 2014).
Furthermore, donors tend to be less interested in pro-
viding funds for inventory in advance of a disaster,
requiring that an HO procure stock from its limited
reserve accounts with the hope of replenishing from
donor contributions in response to an emergency.

The second approach is reactive, under which HOs
purchase inventory (called reactive stock) after a di-
saster strikes from suppliers in or near the affected
area and distribute among beneficiaries using relatively
inexpensive transport modes such as truck. There are
several advantages of reactive stock. First, demand as-
sessment at the time of the purchase decision can be
done much more accurately. Second, although pur-
chasing from local suppliers may be subject to com-
petitive bidding because of the presence of many HOs

in the affected area, hence leading to high purchase
prices, the total landed cost of the locally acquired items
is usually less than the prepo stock because of lower
transport costs.Amanagerwe interviewedatCRS states:
“The unit cost of most items like kitchen sets, clean
up supplies, hygiene supplies, etc. is cheaper while
purchasing locally or regionally.” He provides ex-
amples of the tsunami response where a lot of items
were procured from the region and similarly for the
Pakistan earthquake. The cost advantage is reinforced
in our interview of a manager at the US Agency for
International Development (USAID): “In general,
purchasing items from the field makes a lot more
sense because it is much cheaper” (Tang 2006, p. 38).
Third, reactive stock offers local economic and cul-
tural benefits, as local purchasing helps to dampen
the negative economic shock from the disaster and
helps to speed economic recovery of the area, and it has
the advantage of providing culturally acceptable prod-
ucts (i.e., products that are familiar to the local pop-
ulation (Duran et al. 2011)). A manager at CRS shared
an example where plastic latrine caps from prepo were
shipped into Aceh for the tsunamic response, and CRS
only discovered later that the local populationwouldnot
use latrines. A similar example was shared by a USAID
expert where clothes made in Israel were shipped into
Iraq and were not accepted by the local population. On
the other hand, a disaster in largemagnitudemay lead to
collapse of the local banking system or destroy the local
supply base. “We experienced supply shortage in
Liberia during Ebola, as a result of the main import
companies having an issue to bring the items in
country.” Also, even if local supplies are available
for purchase, the quantity may be insufficient, and
quality may be substandard. In spite of these draw-
backs, HOs generally prioritize the use of reactive
stock over prepo. Executives of those HOs that we
interviewed stressed that they prefer to keep a min-
imum level of prepo, essentially as a backup. Yet,
there is no guideline to determine the optimal level of
prepo inventory, and experienced managers make
these decisions only based on their intuition.
We discuss related literature in the next section

and present the model in Section 3. In Section 4,
we propose and analyze an optimal static policy
(i.e., prepo remains fixed until the next disaster oc-
curs), and in Section 5, we propose and analyze an
optimal dynamic policy (i.e., prepo is updated on a
periodic basis). Section 6 presents numerical illus-
trations. Although ourmain focus is on policieswhere
the local market offers a lower price, we briefly dis-
cuss the similarities and differences between this
case and the case where local price is greater than
the cost of a prepo item (Section 7). Section 8 con-
cludes. Proofs and derivations are available in the
online supplement.
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2. Positioning in the Literature
Supply management in emergency relief operations
has drawn significant attention in the Operations
Management and Management Science literature,
most of which focuses on the proactive approach.
Topics include optimal prepositioning locations and
inventory level (de Treville et al. 2006, Balcik and
Beamon 2008, Duran et al. 2011, Manoj et al. 2016,
Dalal and Üster 2017), response capacity (Salmeron
and Apte 2010, Kunz et al. 2014, Toyasaki et al. 2017,
Ni et al. 2018), and location-allocation models (Mete
and Zabinsky 2010). These studies typically analyze a
two-stage linear stochastic program, with the first
stage focusing on facility location and the second
stage considering inventory level (Balcik and Beamon
2008, Rawls and Turnquist 2010, Galindo and Batta
2013, Klibi et al. 2013, Tofighi et al. 2016). With the
exception of Rawls and Turnquist (2010), most studies
examine a case where demand uncertainty and
transportation network unreliability may exist. Be-
cause of the complexity of these settings, managerial
insights are often obtained through numerical experi-
ments. Recognizing the limitations of the numerical
approach, Campbell and Jones (2011) develop a
newsvendor-type model for identifying a supply
point and level of inventory. Supply is uncertain
because a supply point may be damaged during a
disaster, and the probability of damage is estimated
using the distance between the site and the disaster. A
more recent example is Simchi-Levi et al. (2019),
which studies the problem of prepositioning inven-
tory in a setting where inventory of medical coun-
termeasures is prepositioned to protect infected
population against bioattacks. They propose a two-
stage robust optimization model that minimizes in-
ventory and life loss costs.

Our paper is distinct from this stream of literature
in threemain respects. First, in addition to supply and
demand uncertainty, we introduce budget uncer-
tainty (i.e., the amount of funds available for local
purchases during the IRP) specific to humanitarian
settings that has been largely ignored. Natarajan and
Swaminathan (2014) consider the impact of budget
uncertainty on procurement efficiency where de-
mand is predictable and unmet demand is completely
backlogged. In their model, the budget sizes are known,
but the time of receipt is uncertain. Second, motivated
by practice, we consider the presence of a local source
with uncertain supply. Except for Duran et al. (2011)
that considers the possibility of local supply, a com-
mon assumption is that HOs’ preference is to supply
relief items only fromprepo stock.However, theHOs’
executives who we interviewed emphasized the op-
posite direction: they prefer to fulfill the emergency
demand during IRP from the local markets first and

then cover the additional demands from prepo stock.
We develop analytical guidelines on how to effec-
tively use the limited financial resources to balance
the use of prepo and reactive stocks. Finally, we ex-
tend our model and develop the setting of a dynamic
policy (i.e., the management is allowed to update
prepo quantity at fixed time intervals before the oc-
currence of a disaster).
It is worth underlying that demanduncertainty and

supply disruption have long been studied in the
Operations Management and Management Science
literature (see Snyder et al. 2016 for a review). Simi-
lar to the proactive approach in humanitarian settings,
a common strategy of commercial firms to hedge
against supply disruption and random demand surges
is to maintain stockpiles (Sheffi 2005, Liu et al. 2016)
whose size and source of supply are determined based
on a cost-benefit analysis. For instance, Tomlin (2006)
shows that a risk-neutral firm will pursue a pure
disruption management strategy by carrying inven-
tory and single sourcing from the reliable supplier.
To cope with supply uncertainty, Tomlin and Snyder
(2007) propose keeping an evolving level of safety
stock (i.e., increasing the level of safety stock when
supply uncertainty grows), and Tang (2006, p. 38)
suggests “storing some inventories” at strategic lo-
cations to be shared by multiple partners. Liu et al.
(2016) explain that stockpiles are not beneficial until a
supply disruption or demand surge occurs. Consid-
ering a fast-moving commodity, they suggest a policy
that allows virtual stockpile pooling to minimize the
overall inventory holding costs. In this stream of
literature, the most relevant work to ours is Huang
et al. (2016), who study joint reactive capacity and
safety stock policies in anticipation of sudden de-
mand surges. Considering several aspects of demand
surges (duration, intensity, compactness, volatility,
and frequency), they propose a policy tominimize the
long-run average expenditures under a fixed service
level.Nevertheless, ourmodel significantly differs from
theirs. (1) In Huang et al. (2016), safety stock is pri-
oritized, and reactive capacity serves as the second
source that is the opposite of our setting. (2) In our
model, reactive stock is purchased from local sup-
pliers, and its landing costs less than prepo. (3) We
consider local supply uncertainty, budget uncertainty,
and budget limitation.

3. Model
We analyze the case of a single relief item such as
a kit of essential items (food or medicine) for sur-
vival during the IRP. Suppose that a relief event has
just concluded. The HO sets its target prepo stock,
denoted x, at a single distribution center in prepa-
ration to cover the demand during the IRP for the next

Eftekhar, Song, and Webster: Prepositioning and Local Purchasing for Emergencies
Manufacturing & Service Operations Management, Articles in Advance, pp. 1–18, © 2021 INFORMS 3



disaster that might hit a particular region of the
world. The location of the distribution center is
exogenous. A prepo cost cycle starts at the end of a
disaster’s IRP and ends when the IRP of the next
disaster is over (see Figure 1). It consists of two parts,
T and Y, where T is the random time from the be-
ginning of the cycle until the next disaster strikes and
Y is IRP. During Y, the demand for the item is a
random variable D, and the local supply of the item
is a random quantity Q. (We note that there may be a
positive probability of no local supply; e.g., because a
severe event destroys local supply or the product is
historically unavailable in the affected region.) Be-
causeY is relatively short and all randomvariables are
realized after this period begins, it is reasonable to
assume that all the events during Y happen at one
point at the end of T. That is, we can refer to T as the
cycle length, and Y degenerates to one point.

The unit purchasing and transport cost of prepo
stock is c. Recall from Section 1 that this cost is ex-
pensed against the budget when it is used in the field
(i.e., c is a one-time expense). In addition, the HO
incurs a prepo holding cost at rate i per dollar-period,
which is an ongoing expense. To simplify notation,
we normalize to c � 1. The unit cost of local pur-
chasing and transportation is α multiple of that of
prepo stock. Prepo stock is used to protect against the
possibility of insufficient local supply within the IRP.
Furthermore, prepo stock via air is only used during
the IRP purely because it can be moved quickly (at a
high cost) to the area of need. In this paper, we assume
that the landed cost of prepo c is usually more ex-
pensive than the landed cost of locally purchased
supplies (i.e., α < 1). The unsatisfied demand during
the IRP incurs a unit shortage cost v.

At the beginning of the cycle, there is an initial
budget b, which also includes the carryover prepo
stock from the last cycle. The budget is the initial
amount of funds available for investment in prepo
and for local spend during the IRP. However, there is
an inflow of funds at rate γ per period, and at the time

that a disaster hits, a random amount of emergency
fund R is received.We allow R to be correlated withD
and Q (e.g., emergency funds are higher for disasters
with larger magnitude (Eftekhar et al. 2017)). We
assume that R, D, and Q are independent of T. Thus,
the investment in prepo at the beginning of the cycle is
limited by the initial budget (i.e., x ≤ b). The budget
available for local spend is the remaining budget after
investment in prepo plus funds received over the
cycle: that is, the random upper limit on local spend
for a disaster at time T is

b̂ x,R,T( ) � b + γT + R − x. (1)
Accordingly, the constraint on the number of units

purchased locally, denoted xL, is xL ≤ b̂(x,R,T)/α.
Because the HO prioritizes local supply over prepo,
the random local purchase quantity is L(x) � min
{D,Q, b̂(x,R,T)/α}, the random local shortage is S(x) �
(D −min{Q, b̂(x,R,T)/α})+, and the random global
shortage is (S(x) − x)+. Table 1 summarizes the no-
tation in our model. (Recall that the novel features
of our model include the budget b, the choice of lo-
cal sourcing, and the financial inflow γT and R. If
we do not consider the budget limitation and ig-
nore the possibility of local supply (i.e., b � ∞ and
Q � 0), then L(x) � 0, S(x) � D, and the global shortage
is (D − x)+, which is the underage in the classic news-
vendor model.)
In summary, there are four distinct cost elements

that go into the random cost of a cycle. First, there is
the ongoing cost of holding prepo inventory during
the cycle, ixT. Second, there is the cost of purchasing
and distributing local supply,αL(x). Third, there is the
purchase and transport cost of prepo that is used
during the IRP, min{x, S(x)}. Fourth, there is the cost
of unsatisfied demand during the IRP, v(S(x) − x)+.
The prepo decision x is constrained by the initial
budget, b (x ≤ b), and the local purchase quantity
decision is constrained by the initial budget reduced
by prepo investment plus cash inflows during the

Figure 1. (Color online) Prepo Cost Cycle: Decision Maker Decides the Prepo Level at Time t � 0 and Disaster Strikes at t � T
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cycle, xL ≤ b̂(x,R,T)/α. Thus, the expected cost during a
cycle is

C x( ) � E iTx + αmin D,Q,
b + γT + R − x

α

{ }[
+min x,S x( ){ } + v S x( ) − x( )+

]
� αμD + iμTx + 1 − α( )E S x( )[ ]
+ v − 1( )E S x( ) − x( )+[ ],

and the problem at the beginning of the cost cycle is

Π : min
x≤b

C x( ).

Obviously, if b � ∞ and Q � 0, then C(x) � μD +
iμTx + (v − 1)E[(D − x)+] is the single-source news-
vendor cost, and the optimization problem is the
classic newsvendor problem without the budget con-
straint. Note that in a dynamic problem with nonsta-
tionary data, the optimization problem Π determines a
myopic prepo level that minimizes the expected cost
in one cycle. In a dynamic settingwithmultiple cycles,
the initial budget b is the state of the current cycle. The
state of the next cycle would be the remaining budget
at the end of the current cycle plus a new budget b+ for
the next cycle. When b+ is significant and data are
stationary, it is reasonable to expect that a myopic
policy is optimal (i.e., in practice, HOs do not ignore
demand of the current disaster and hold inventory for
future disasters). Therefore, our findings apply.

4. Analysis
4.1. Optimal Solution
Let Ω denote the support of (D,Q,R,T). Define three
events and the partial expectation of a function of
random variables

Ω1 x( ) :� d, q, r, t
( )

: d >
b + γt + r − x

α
,

{
q >

b + γt + r − x
α

, d, q, r, t
( ) ∈ Ω

}
Ω2 x( ) :� d, q, r, t

( )
: d >

b + γt + r − x
α

{
+ x, q >

b + γt + r − x
α

, d, q, r, t
( ) ∈ Ω

}
Ω3 x( ) :� d, q, r, t

( )
: d > q + x, q ≤ b + γt + r − x

α
,

{
d, q, r, t
( ) ∈ Ω

}
E z D,Q,R,T( ); Ωi x( )[ ] :�

∫
Ωi x( )

z d, q, r, t
( )

fDQR

× d, q, r
( )

fT t( )dddqdrdt, i � 1, 2, 3.

Note that

dE S x( )[ ]
dx

� 1
α
P Ω1 x( )[ ] (2)

dE S x( ) − x( )+[ ]
dx

� 1 − α

α
P Ω2 x( )[ ] − P Ω3 x( )[ ]. (3)

Table 1. Notation Table

Variable/parameter Description

x Order-up-to quantity of prepo stock at start of the cycle; the decision variable
c Cost per unit (including transport) for prepo stock, normalized to 1
α Ratio of local cost to prepo cost per unit (including transport) or local supply cost multiple, α < 1
i Cost per dollar-period for holding prepo stock (e.g., opportunity cost, storage charges, obsolescence)
v Cost per unit of unsatisfied demand during the immediate relief period, v > c
b Available budget (including current prepo stock) at the start of the cycle
γ Inflow per period during a cycle (i.e., used for prepo inventory holding cost and purchase of local stock during

the immediate relief period)
D Uncertain demand during immediate relief period
Q Uncertain local supply during immediate relief period
R Random cash received at the time of the disaster (emergency fund)
T Uncertain time to next disaster, which is independent of D, and Q
L Total quantity purchased locally during immediate relief period
S Shortage of supply during immediate relief period (because of the lack of supply or budget)
fj, Fj Marginal pdf and cdf of j ∈ {D,Q,T}
fDQR, FDQR Joint pdf and cdf of (D,Q,R)
[ j, j] Support of j ∈ {D,Q,R,T}, nonnegative, possibly unbounded
μj, σ2j Mean and standard deviation of j ∈ {T,D,Q,R,S}
Note. cdf, cumulative distribution function; pdf, probability density function.
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Proposition 1. C(x) is convex, and optimal prepo stock is

x∗ � min xo( )+, b{ },
where xo � m−1(0) is the optimal unconstrained prepo
stock and m(x) � mc(x) −ms(x) with

mc x( ) � iμT + 1 − α

α
P Ω1 x( )[ ] + v − 1( )P Ω2 x( )[ ]( )

ms x( ) � v − 1( )P Ω3 x( )[ ].
(Proofs and derivations are located in the online
appendix.)

The intuition underlying Proposition 1 is as fol-
lows. The marginal local shortage (Equation (2)),
which appears in the marginal cost function mc(x), is
the rate at which local stock decreases per unit in-
crease in prepo stock under event Ω1(x) (i.e., rate 1/α).
On the other hand, the marginal global shortage
(Equation (3)), which appears in the marginal savings
function ms(x), is the rate at which total stock de-
creases per unit increase in prepo stock under event
Ω2(x) (i.e., rate 1/α − 1) less the rate at which total
stock increases under event Ω3(x) (i.e., rate 1). This
intuition helps clarify the drivers of the optimal prepo
stock quantity in the event that the prepo constraint is
nonbinding (denoted xo).

The next proposition identifies lower bounds (LBs)
and upper bounds (UBs) on optimal prepo. These
bounds are relatively easy to compute and help to
illuminate the offsetting pressures that influence op-
timal prepo. The bounds rely on additional notation
and the definition of an auxiliary model wherein the
local budget constraint is relaxed (i.e., min{Q, b̂(x,R,T)α } is
replaced with Q). Our auxiliary model applies to
settings where the HO is assured to have enough
funds for local spend during the IRP, a condition
that holds for larger HOs. The cost function for
this auxiliary model is Ca(x) � αμD + iμTx + (1 − α)
E[(D − Q)+] + (v − 1)E[(D − Q − x)+], which shows
similarity to the newsvendor structure; the optimal
solution is

x̄∗ � argmin
x≤b

Ca x( ) � min
{
x+( )+, b}, (4)

where

x+ � F̄−1D−Q β∗( )
with β∗ � iμT

v − 1
.

(When there is no local source (i.e., Q � 0), this is
exactly the classic newsvendor solution.) We see that
x+ is fractile 1 − β∗ of the random demand net of
random local supply and that the optimal shortage
probability (β∗) balances the cost rate of excess prepo
(iμT) with the cost rate of insufficient prepo (v − 1).
Because this solution carries the same form of the

newsvendor solution, the same insights gained from
the newsvendor problem equally apply here when
the random demand in the former is replaced by the
net demand D −Q. For example, according to Song
(1994), x+ is larger if D −Q is stochastically larger.
Assuming D and Q are independent, this condition
includes the situations when the distribution of Q (D) is
fixed, whereas D (Q) is stochastically larger (smaller).
Similarly, a more variable D or Q implies a more
variable D −Q, which in turn, implies a larger x+ if β∗
is smaller than a threshold; otherwise, x+ should
be lower.
Observe that maximum funding need for local

spend (as of the beginning of the cost cycle) is
max{αmin{d, q} − γt − r : (d, q, r, t) ∈ Ω}, which because
of independence of triple (D,Q,R) and T, can be
written as max{αmin{d, q} − r : (d, q, r) ∈ Ω} − γT. So,
if the budget at the beginning of the cycle is

b̄ � max αmin d, q
{ } − r : d, q, r

( ) ∈ Ω
{ } − γT + x+( )+

(5)
or more, then the local spend constraint is not bind-
ing. By comparing budget bwith threshold budget b̄,
we can identify conditions wherein problem Π re-
duces to the auxiliarymodel. Aswe see in Proposition 2,
the optimal solution to the auxiliarymodel provides an
upper bound on optimal prepo that can be interpreted
as a simple newsvendor-based heuristic. This heuristic
is exact when the budget is above the characterized
threshold; otherwise, the heuristic (i.e., upper-bound
formula) is suboptimal. The proposition requires the
following additional notation and assumption:

mc x( ) � iμT

m̄s x( ) � v − 1( )F̄D−Q x( )
m x( ) � mc x( ) − m̄s x( )
x+ � m−1 0( ) � F̄−1D−Q β∗( )

m̄c x( ) � iμT + 1 − α

α
F̄Q

b − x
α

( )
F̄D

b − x
α

( )(
+ v − 1( )F̄D b − x

α
+ x

( ))
ms x( ) � v − 1( )F̄D−Q x( )FQ b − x

α

( )
m̄ x( ) � m̄c x( ) −ms x( )
x− � m̄−1 0( ).

Assumption 1. Demand and local supply are not posi-
tively correlated.

Assumption 1 arguably holds in practice: for ex-
ample, a severe event results in high demand and may
partially destroy local supply or inhibit access to local
supply (e.g., because of damage to infrastructure).
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Proposition 2. (a) x∗ ≤ x̄∗ � min{(x+)+, b}. (b) If b ≥ b̄,
then x∗ � x̄∗ � (F̄−1D−Q(β∗))+. (c) SupposeAssumption 1 holds.
Then, x∗ ≥ x∗ � min{(x−)+, b}. (d) Suppose Assumption 1
holds and b < b̄. If x∗ � b, then x∗ � b. (e) mc(x) ≤ mc(x)
and m̄s(x) ≥ ms(x). If Assumption 1 holds, then m̄c(x) ≥
mc(x) and ms(x) ≤ ms(x).

Proposition 2 shows that there is a threshold budget b̄,
above which the cost model exhibits a newsvendor-
type trade-off. As noted, the value of β∗ can be inter-
preted as the optimal unconstrained shortage prob-
ability. Its value is determined from three model
primitives: cost per unit-period for holding prepo
stock, i; average number of rapid-onset disasters per
period or disaster frequency, 1/μT; and shortage cost
expressed as the percentage increase in prepo purchase/
transport cost or relative shortage cost (v − c)/c � v − 1 (c
normalized to 1). Because local supply is prioritized
(and thereby, is used first to the extent that it is
available and needed), the local supply cost multiple,
α, plays no role in the optimal prepo level when b ≥ b̄.
The value of x+ is set to balance the unit cost of holding
inventory, iμT, against the marginal cost of a prepo
stock shortage (v − 1) in the event that local supply is
insufficient to cover demand that occurs with prob-
ability P[D −Q > x+].

4.2. Comparative Statics
Unless stated otherwise, we use increasing and de-
creasing in their weak sense throughout the paper.

Proposition 3. Suppose b > b̄. (a)Optimal prepo stock x∗ is
unaffected by changes in (1) local supply cost multiple α,
(2) cash inflow rate γ, (3) mean and standard deviation of
the emergency fund μR and σR, and (4) the volatility of
time between disasters σT. (b) Optimal prepo stock x∗ is
increasing in (1) disaster frequency 1/μT, (2) shortage
cost v, (3) initial budget b, and (4) average demand μD.
(c) Optimal prepo stock x∗ is decreasing in (1) holding cost
rate i, (2) cost per unit of prepo stock c, and (3) average local
supply μQ. (d) Optimal prepo stock x∗ increases as σD and
σQ increase (decrease) by the same proportion if x+ > μD −
μQ (x+ < μD − μQ). (e) If D and Q share the same marginal
density function that is symmetric, then optimal prepo stock
x∗ increases as (1) σD and/or σQ increase (decrease) if x+ >
μD − μQ (x+ < μD − μQ), and (2) D and Q become more
(less) negatively correlated if x+ > μD − μQ (x+ < μD − μQ).

The results in Proposition 3 offer lessons for how
management may adjust prepo stock in response to
changes in the environment. In our discussion of
these results and lessons, we include parameter c
(normalized to one) in relevant expressions because
we address the effects of changes in prepo cost per
unit. Some of the directional results follow from an
understanding of the trade-off discussed (i.e., x+
balances a downward pressure stemming from the

cost of holding inventory icμT against the upward
pressure stemming from the relative shortage cost
v − c) in conjunction with the prepo budget constraint
(i.e., x ≤ b/c). From these observations, it follows
rather naturally that increases in holding and pur-
chase cost put downward pressure on prepo stock,
whereas increases in disaster frequency, shortage cost,
and funds put upward pressure on prepo stock. The
directional effects related to moments and correlation
of random variables are not directly tied to the trade-
off and warrant discussion. First, changes in the vol-
atility of time between disasters have no effect on
prepo stock. Given b > b̄, funding is sufficient to as-
sure that local purchases will not be limited by the
budget. As a consequence, the random local budget
quantity does not enter into the prepo stock trade-off.
Of course, optimal prepo stock is sensitive to changes
in the first moment of T (μT) through its effect on
holding cost. Second, as one may expect, optimal
prepo increases as expected demand increases, and as
expected, local supply decreases.
The impacts of changes in uncertainty and corre-

lation are more subtle because of dependence on the
shortage criticality of the item.We label a relief item as
critical if the optimal unconstrained prepo stock (x+)
exceeds the expected mismatch between demand and
local supply (i.e., x+ > μD − μQ) and noncritical if the
opposite inequality holds (i.e., x+ < μD − μQ). (For
example, for symmetric distributions of D −Q, the
critical is a product with a newsvendor fractile more
than 50%.) As the uncertainty in demand and local
supply increase by the same proportion, the optimal
prepo stock of critical relief items increases, and
the optimal prepo stock of noncritical relief items
decreases. A proportional increase in both σD and σQ
increases the tails of the random mismatch D −Q
distribution, which decreases the shortage probabil-
ity below β∗ for a critical relief item, thus requiring an
increase in prepo to compensate (and vice versa for a
noncritical item). If the marginal distributions of D
andQ are symmetric and identical, then the specific x+
threshold for the reversal of the directional effect
(i.e., μD − μQ) holds for an increase in σD and/or σQ
(i.e., the threshold is not dependent on a proportional
increase). The phenomenon that optimal prepo is
increasing in demand and/or supply uncertainty for
more critical items and decreasing for less critical
items is likely to hold over a range of asymmetric
distributions, although the specific threshold will
depend on the specific distribution. The same be-
havior is associated with an increase in negative
correlation between D and Q. This is because the
introduction of negative correlation amplifies the
variance of mismatch between demand and local
supply (i.e., variance of D −Q), just as with increases
in σD and/or σQ.
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In addition to understanding whether prepo stock
should increase or decrease in response to changes in
the environment, the directional impacts may pro-
vide insight into the impact of candidate interven-
tions by management. For example, it is clear that
investments to improve forecasts of demand and/or
local supply help reduce the costs of mismatch be-
tween demand and supply. However, other things
being equal, such investments are likely to be more
attractive for critical items than noncritical items. One
relatively obvious reason for this is the high shortage
cost of critical items compared with noncritical items
(e.g., with no change in prepo stock, the value of
improved forecasting is increasing in shortage cost).
However, Proposition 3 tells us that optimal prepo
stock of a critical relief item decreases as forecasts
improve. Thus, in settings where the budget is lim-
iting investment in prepo (i.e., x+ > b), the rate of
savings from improved forecasts is amplified for
critical items, reflecting gains from both lower mis-
match cost and lower cost of insufficient funding. In
contrast, the inventory effect for noncritical relief
items is reversed, possibly exacerbating the cost of
budget limitations as forecast accuracy improves.
Similarly, the positive effects of investments that in-
crease average supply (i.e., reduce μD − μQ) or soften
the degree of negative correlation between demand
and supply are amplified for critical items relative to
noncritical items.

Proposition 4. Suppose b < b̄. (a) Optimal prepo stock x∗
can increase or decrease as the following parameters in-
crease: (1) local supply cost multiple α, (2) average demand
μD, (3) disaster frequency 1/μT, (4) uncertainty in demand
σD, (5) uncertainty in supply σQ, (6) uncertainty in the
emergency fund σR, and (7) uncertainty in time between
disasters σT. (b) Optimal prepo stock x∗ is increasing in
(1) shortage cost v, (2) initial budget b, (3) cash inflow rate γ,
and (4) average emergency fund μR. (c) Optimal prepo stock
x∗ is decreasing in (1) holding cost rate i, (2) cost per unit of
prepo stock c, and (3) average local supply μQ. (d) If i � 0,
then optimal prepo stock x* is decreasing in disaster fre-
quency 1/μT.

As noted, the setting of Proposition 3 tends to fit
HOs with a mission and resources to provide relief
well beyond IRP or more generally, HOs for which
local purchases during IRP are not constrained by
the budget. In contrast, the setting of Proposition 4
tends to fit HOs that attend only to life-critical relief
(e.g., exiting the region shortly after IRP) or more
generally, where the budget limits what can be pur-
chased locally.

We can observe that the system is more complex
under the setting of Proposition 4. Recall that the
setting of Proposition 3 is onewhere, at optimal prepo
stock x∗, the local budget quantity constraint is never

binding. As a consequence, optimal x∗ balances the
cost of holding prepo inventory against the shortage
cost that occurs when demand is greater than the sum
of local supply and prepo stock (to the extent that the
prepo funding limit of b allows). The setting of
Proposition 4 introduces an additional trade-off in the
determination of x∗: balancing the cost of an excess
local budget against the cost of an insufficient local
budget. The cost of an excess local budget is associ-
ated with a global shortage and local budget more
than local supply (i.e., S(x) > x and b̂(x,R,T)/α > Q);
cost would have been lower if prepo stockwas higher.
The cost of an insufficient local budget is associated
with a shortage—either local or local and global—and
local budget less than local supply (i.e., S(x) > 0 and/
or S(x) > x and b̂(x,R,T)/α < Q); cost would have been
lower if prepo stock was lower (i.e., because it is more
cost effective to cover shortages with local stock). In
the following, we discuss results in Proposition 4 that
differ from Proposition 3 and the intuition underlying
the shifts in results.
Proposition 3 states that an increase in the fre-

quency of disasters leads to an increase in prepo stock
because this change reduces the cost of holding in-
ventory. In the setting of Proposition 4, a greater
disaster frequency also means less time to accrue
funds before the next disaster. Because of increasing
budget pressure, optimal prepo stock may decrease
so as to open up more funds for local purchases. The
greater the budget pressure, the more likely that
optimal prepo stock will decrease as disaster fre-
quency increases. Similar effect explains why optimal
prepo stock is increasing in average demand under
Proposition 3 but may be increasing or decreasing
under Proposition 4. In particular, an increase in
average demand increases budget pressure. As it is
more cost effective to cover shortages using local
supply, other things being equal, an increase in budget
pressure translates to a relatively higher allocation of
funds for local purchasing.
In contrast to Proposition 3, under the setting of

Proposition 4, changes in α influence optimal prepo
stock (because of the local budget constraint that can
be binding). On one hand, an increase in α reduces the
cost of prepo stock relative to local supply,which puts
upward pressure on x∗. On the other hand, an increase
in α reduces the local budget quantity, which puts
downward pressure on x∗. Perhaps surprisingly, x∗ is
more likely to be increasing in αwhen local supply is
inexpensive compared with prepo (i.e., small α) and
less likely otherwise. The reason is that the percentage
increase in local supply cost when α is increased by
some fixed amount is larger when α is small (see the
proof of Proposition 4).
Under the setting of Proposition 3, changes in

uncertainty of the emergency fund or time between
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disasters do not affect optimal prepo stock x∗, and the
directional effect of increasing demand and supply
uncertainty depends on the item criticality. The set-
ting of Proposition 4 introduces an additional trade-
off that includes the probability of insufficient local
budget on one side and the probability of a global
shortagewith an excess local budget on the other side.
The directional effect of an increase in σR or in σT
on these probabilities can go in either direction, de-
pending on parameter values and probability distribu-
tions. Furthermore, the interaction between random
mismatchD −Q and random time between disasters, T,
eliminates the possibility of a simple threshold to
distinguish between whether x∗ is increasing or de-
creasing in uncertainty.

Propositions 3 and 4 together offer insight into
how a general trend of increasing frequency and
severity of disasters (e.g., because of a combination of
accelerating climate change and population growth)
will affect HO supply management. If budget pres-
sure is high, then management should decrease the
investment in prepo stock as disaster frequency and
severity increase. Overall, as disasters become more
frequent and severe with a consequent increase in
budget pressure, we can expect HOs to place greater
emphasis on local supply during the immediate
relief period.

5. Dynamic Prepo Policy
In this section,we relax our assumption that the prepo
decision at the end of an immediate relief period is
fixed until the next disaster occurs. We define and
analyze a model wherein the prepo level is reviewed
on a periodic basis.

Let tx denote the length of the time between prepo
decisions (e.g., if tx periods have elapsed since the last
review (and no disaster has occurred in the interim),
then prepo is reoptimized). We refer to tx as the prepo
review period. As in Section 3, we define a model of
expected cost over a prepo cost cycle. The timing
details of a dynamic prepo policy are illustrated in
Figure 2. The figure illustrates three prepo cost cycles,
with prepo updated twice during the first cycle, not
updated during the second cycle, and updated three
times during the third cycle.

The notation of our dynamic model follows the
notation of Section 3 with the following adjustments
and additions. The prepo decision at the beginning
of period n is xn. Suppose that a disaster occurs in
period n (i.e., T ∈ [(n − 1)tx, ntx)). Let Tn denote the
random time that the disaster occurs within period n
(i.e., Tn � (T − (n − 1)tx)|T ∈ [(n − 1)tx,ntx) and μn �
E[Tn] � E[T − (n − 1)tx|(n − 1)tx ≤ T < ntx]). Recall that
b is the initial budget (at time zero before prepo is
updated) that includes the carryover prepo stock
from the last cycle. We similarly let bn denote the

budget at the beginning of period n that includes
prepo stock determined in the previous period. For
example, if n � 1, then b1 � b. If n > 1, then bn includes
the cash inflow between the start of period 1 (time zero)
and the start of period n. Thus, the budget available
for prepo at the beginning of period n given that a
disaster has not yet occurred is bn � b + γ(n − 1)tx.
Suppose that at the beginning of period n, a disaster

has not yet occurred. The decision maker has the
opportunity to update prepo. In the following, we
define relevant functions and the decision maker’s
problem at the beginning of period n. The functions
include prepo as an argument that we denote as x.
If a disaster occurs in period n at time Tn, the

random budget for local spend as a function of prepo
at the start of period n, emergency fund, and disaster
time is

b̂n x,R,Tn( ) � b + γ n − 1( )tx + Tn( ) + R − x

� bn + γTn + R − x.

Let x1, x2, . . . , xn−1 denote the prepo decisions in the
cycle prior to period n. Then, the sum of past prepo
decisions since the beginning of the prepo cost cycle
is yn: that is,

yn � ∑n−1
k�1

xk , with y1 � 0.

We add a subscript to the random local shortage
function, Sn(x) (i.e., random local shortage given
that a disaster occurs in period n with prepo x):

Sn x( ) � D −min Q,
b̂n x,R,Tn( )

α

{ }( )+
� D −min Q,

bn + γTn + R − x
α

{ }( )+
.

With this notation, the prepo decision problem at the
beginning of period n (given that a disaster has not yet
occurred) is

C∗n yn
( ) � min

x≤bn

C̄n x, yn
( )

P T ∈ n − 1( )tx,ntx[ ) |T[
≥ n − 1( )tx] + C∗n+1 x + yn

( )
× P T ≥ ntx|T ≥ n − 1( )tx[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭, (6)

Figure 2. (Color online) Illustration of Prepo Cost Cycles
in a Dynamic Setting
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where C̄n is the expected cost given that the disaster
occurs in period n,

C̄n x, yn
( ) � itxyn + iμnx + 1 − α( )E Sn x( )[ ]

+ v − 1( )E Sn x( ) − x( )+[ ],
and C∗n(yn) is the optimal expected cost to go given
yn and the disaster occurs in period n or later.
Proposition 5 characterizes the optimal decision and
identifies lower and upper bounds on optimal prepo.
It relies on the following notation that largely follows
the notation in Section 4, although it is augmented to
account for period n. Let Ω denote the support of
(D,Q,R,Tn). Define Ωi(x) as in Section 4.1 with b
replaced by bn, i � 1, 2, 3. Let

pn � P T ∈ n − 1( )tx,ntx[ )|T ≥ n − 1( )tx[ ]
mc x( ) � i μn + tx

1 − pn
pn

( )
+ 1 − α

α

P Ω1 x( )[ ] + v − 1( )P Ω2 x( )[ ]( )
mc x( ) � i μn + tx

1 − pn
pn

( )

β∗n �
i μn + tx

1−pn
pn

( )
v − 1

m̄c x( ) � i μn + tx
1 − pn
pn

( )
+ 1 − α

α
F̄Q

bn − x
α

( )
× F̄D

bn − x
α

( )
+ v − 1( )F̄D bn − x

α
+ x

( )( )
b̄n � max αmin d, q

{ } − r : d, q, r
( ) ∈ Ω

{ }
− γTn + x+( )+.

(Following the notation convention in Table 1, the
support of Tn is [Tn, T̄n]).2 Define all other notations
similarly as in Section 4.1 with b replaced by bn and β
replaced by βn.

Proposition 5.
a. The optimal prepo decision at the beginning of period

n is

x∗n � min xo( )+, bn{ }. (7)
Furthermore, x∗n ≤ x̄∗n � min{(x+)+, bn}.

b. If bn ≥ b̄n, then x∗n � x̄∗n � (F̄−1D−Q(β∗))+.
c. Suppose Assumption 1 holds. Then, x∗n ≥ x∗n �

min{(x−)+, bn}.
d. Suppose Assumption 1 holds and bn < b̄n. If x∗n � bn,

then x∗n � bn.
e. mc(x) ≤ mc(x) and m̄s(x) ≥ ms(x). If Assumption 1

holds, then m̄c(x) ≥ mc(x) and ms(x) ≤ ms(x).
We note that a key idea underlying Proposition 5 is

that we are able to decompose (6) into a collection of
terms that depend on yn and x and a term that does not
(see the proof of Proposition 5). Although the optimal

cost-to-go function cannot be computed (because the
last term is unknown), the key insight is that terms
that depend on yn and x can be expressed, thereby
allowing optimal prepo to be characterized.
We see that the results in Proposition 5 are similar

to the results in Propositions 1 and 2 that apply to
the static prepo model. In order to discuss differ-
ences, we begin with Table 2, which summarizes the
model elements that differ between the static and
dynamic models.
The results in Table 2 highlight drivers of differ-

ences in optimal prepo between static and dynamic
models. Differences can be traced to three effects:
(1) prepo budget effect, (2) local budget effect, and
(3) marginal holding effect.

5.1. Prepo Budget Effect
For the static model, there is a single prepo decision
subject to budget limit b. The dynamic model updates
prepo each period until a disaster occurs. The initial
budget is identical to the static model but increases
thereafter if γ > 0 (i.e., b � b1 and bn < bn+1∀n). Note
that there is no prepo budget effect if γ � 0.

5.2. Local Budget Effect
The marginal cost and savings functions include the
probabilities of events defined through sets Ω1, Ω2,
and Ω3, which are affected by the random local
budget: that is,

P Ω1 x( )[ ] � P D >
b̂•
α
,Q >

b̂•
α

[ ]

P Ω2 x( )[ ] � P D >
b̂•
α
+ x,Q >

b̂•
α

[ ]

P Ω3 x( )[ ] � P D > Q + x,Q ≤ b̂•
α

[ ]
,

where b̂• � b̂(x,R,T) for the static model and b̂• �
b̂n(x,R,Tn) for the dynamic model. Note that there
is no local budget effect if γ � 0 (i.e., b̂(x,R,T) �
b̂n(x,R,Tn) for any n).

Table 2. Key Differences in Static and Dynamic
Model Elements

Static model Dynamic model

Prepo quantity constraint because of budget
x ≤ b x ≤ bn � b + γ(n − 1)tx

Local quantity constraint because of budget
b̂(x,R,T) � b + γT + R − x b̂n(x,R,T) � bn + γTn + R − x
xL ≤ b̂(x,R,T)

α xL ≤ b̂n(x,R,Tn)
α

Marginal prepo holding cost
iμT i(μn + tx

1−pn
pn

)
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5.3. Marginal Holding Effect
The marginal cost functions include the marginal
holding cost of prepo. As shown in Table 2, the
marginal holding cost under the static model is iμT,
and the marginal holding cost under the dynamic
model is i(μn + tx(1 − pn)/pn). The following lemma
presents an identity that is useful comparing the
marginal holding costs. Recall that μn is the expected
time within prepo review period n that a disaster
occurs (given that it occurs in period n) as of the
beginning of the period. Let μ+

n denote the expected
remaining time to disaster as of the beginning of
prepo review period n, that is,

μ+
n � E T − n − 1( )tx|T − n − 1( )tx ≥ 0[ ].

Lemma 1. For any probability distribution of random time
to disaster T,

μn + tx
1 − pn
pn

� μ+
n + μ+

n − μ+
n+1

( ) 1 − pn
pn

.

In the remainder of this section, we focus on the
case where T is an exponential random variable.
(In Section 6, we provide justification for why the
exponential distribution is often a reasonable assump-
tion in practice.). However, Lemma 1 can be useful for
clarifying the marginal holding effect for different
probability distributions of time to disaster. To illustrate
this point, we present a brief example where T is uni-
formly distributed between zero and Ntx periods. For
convenience, we assume that N is even. Then,

μ+
n � tx

N − n − 1( )
2

μ+
n − μ+

n+1 �
tx
2

1 − pn
pn

� N − n − 1( ) − 1( )/ N − n − 1( )( )
1/ N − n − 1( )( ) � N − n

μ+
n + μ+

n − μ+
n+1

( ) 1 − pn
pn

� tx
N − n − 1( )

2
+N − n

2

( )
� tx

1
2
+N − n

( )
μT � μ+

1 � txN
2

tx
1
2
+N − 1

( )
� μ+

1 + μ+
1 − μ+

2
( ) 1 − p1

p1

> μ+
2 + μ+

2 − μ+
3

( ) 1 − p2
p2

> . . .

> μ+
N/2 + μ+

N/2 − μ+
N/2+1

( ) 1 − pN/2

pN/2

� μT � txN
2

> . . .

> μ+
N + μ+

N − μ+
N+1

( ) 1 − pN
pN

� μ+
N � tx

2
.

For uniform time to disaster, the marginal cost of
holding prepo is initially higher in the dynamic model,
matches the static model at the midpoint of the max-
imum time to disaster, and is smaller thereafter. Thus, if
γ � 0 (so budget does not grow over time), then the
optimal prepo values under uniformly distributed time
to disaster satisfy

x∗1 ≤ x∗2 ≤ · · · ≤ x∗N/2−1 ≤ x∗N/2

� x∗ ≤ x∗N/2+1 ≤ · · · ≤ x∗N . (8)
Furthermore, if the upper-bound constraint on

prepo is not binding, then the inequalities are strict.
Equation (8) can be interpreted as a pure manifesta-
tion of the marginal holding effect under a uniform
distribution (i.e., behavior when prepo and local
budget effects are removed). Our next result, which
is a corollary to Lemma 1, shows that the marginal
holding effect disappears when time to disaster is an
exponential random variable. This result underlies
Proposition 6 that provides a comparative charac-
terization of prepo decisions for static versus dy-
namic models and Proposition 7 that characterizes
the effect of increasing tx.

Corollary 1. If T is an exponential random variable, then

μn + tx
1 − pn
pn

� μT.

Proposition 6. Suppose that T is an exponential ran-
dom variable.
a. x∗1 ≤ x∗ and x∗n ≤ x∗n+1 for all n.
b. If γ � 0, then x∗ � x∗n for all n.
c. If b ≥ b̄, then x∗ � x∗n for all n.
d. Suppose Assumption 1 holds and γ > 0. If x∗ � b,

then x∗ � x∗1 and x∗ ≤ x∗n for all n.

Proposition 7. Suppose that T is an exponential random
variable. Then, x∗1 is increasing in the length of the review
period tx.

Let us recap our main conclusions from analysis
given exponentially distributed time to disaster. If
donations received over time either are not allocated
to the immediate relief period or are nonexistent
(i.e., γ � 0) or if the HO has enough cash reserves to
assure that the local budget constraint is nonbinding
(e.g., b ≥ b̄), then the static and dynamic models are
equivalent. In these cases, it is optimal to set prepo at
the beginning of the prepo cost cycle and leave it fixed
until the next disaster occurs. On the other hand, if
γ > 0, then dynamic optimal prepo is nondecreasing
over time until the disaster occurs.
Proposition 6(a) compares optimal prepo over the

extremes of an infinite review period (static model)
and a finite review period (dynamic model). For a
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given budget, we see that dynamic optimal prepo is
dominated by static optimal prepo (i.e., x∗1 ≤ x∗). For
this comparison, the prepo budget effect and marginal
holding effect are not present (i.e., because of the same
budget and exponential time to disaster). We see that
recourse value of the dynamic model is solely driven by
the local budget effect. In particular, the option to up-
date prepo at the end of the review period in the event
that a disaster does not occur adds value by pro-
viding additional funds for local spend that the event
that a disaster does occur. Proposition 7 shows that
this phenomenon holds outside of the extremes of
finite versus infinite review period (i.e., that optimal
prepo is nondecreasing in review period length). Key
drivers of the significance of this effect are the funds’
inflow rate and the budget. The length of the review
period has no effect on optimal prepo if γ � 0
(Proposition 6(b)), if budget is high (Proposition 6(c)),
or if budget is low (e.g., a binding constraint on
prepo). For our calibrations in the next section, we find
that for the same budget, there is little or no difference
in optimal prepo for dynamic and static models. Al-
though there is minimal difference in the time zero
prepo values (e.g., the local budget effect is largely
insignificant in our calibrations), we do see differences
as time elapses (e.g., given γ > 0, dynamic optimal
prepo increases over time, reflecting the prepo bud-
get effect).

Propositions 3 and 4 show how the optimal static
prepo changes as various parameters increase. How
do these comparative statics change for the dynamic
model? In other words, what are the effects of in-
creases in parameters at the beginning of period n on
optimal prepo? By examining Table 2, it is clear that
all of the directional effects identified in Propositions 3
and 4 continue to hold for the dynamic model
(i.e., bn, b̄n, and x∗n take the place of b, b̄, and x∗ in
the propositions).

Note that the dynamic model reduces to the static
model when the prepo review period is infinite. In the
next section, we present numerical results that il-
lustrate the effects of changes in various model pa-
rameters on prepo decisions, including the length of
the prepo review period.

6. Numerical Illustrations
Through numerical analysis in this section, we seek to
provide insight into (i) settings where optimal prepo
is likely to be closer to the lower bound, closer to the
upper bound, or near themiddle; (ii) conditions under
which expected cost is relatively insensitive to dif-
ferent levels of prepo between the lower and upper
bounds; and (iii) the value of emergency fund. Such
insights can be useful for understanding how alter-
native assumptions on costs and uncertainty trans-
late into reasonable prepo targets and ultimately, for

helping to make prepo decisions that take advantage
of (likely limited) available information.

6.1. Setting
We designed our numerical experiments inspired by
actual response operations of a large internationalHO
(hereafter, focal humanitarian organization (FHO))
that owns a warehouse in Lipa city in the Philippines.
We assume that FHO’s Philippines warehouse covers
emergency demands if a rapid-onset disaster hits
Indonesia, Guinea, the Philippines, Myanmar, Ban-
gladesh, Vietnam, Cambodia, and Laos. Using mul-
tiple sources such as the Emergency Events Database3

and Glide Number,4 we collected disasters data from
June 1, 2006 to June 31, 2018. Our data contain in-
formation about the date and type of each disaster
and the number of affected people. We excluded
disasterswith transitional period (e.g., storm, tropical
cyclone, and disasters that affected less than 1,000
people). We counted 66 rapid-onset disasters that
affected one of the mentioned countries. To estimate
the frequency of disaster, we found that the average
time between two consecutive disasters is 67.5 days,
with standard deviation of 65.3 days. Therefore, we
assume events occur at an average rate of about six
per year, and FHO cannot discount the possibility of
immediate relief activities for multiple events oc-
curring nearly simultaneously (i.e., in effect, T � 0).
Without information to indicate otherwise, we esti-
mate that the time between relief events is an expo-
nential random variable.5

Over the course of 12 years, we found seven di-
sasters that affected more than 700,000 people. Be-
cause these disasters typically attract the attention of
many large international HOs, it is understandable
that FHO sets a demand cap to cover. The median
number of affected is around 50,034. Therefore, in our
numerical study, we let the demand for a relief item
range from 50,000 to 700,000 beneficiaries. Assuming
an average total landed cost of $50 (approximate
landed cost of a kitchen kit with original price of $35),
we convert demand in kits to demand in 1,000 prepo
dollars and assume that demand is uniformly dis-
tributed over this range (i.e., D ∼ U[500, 7000]). In
order to illustrate the effect of highly critical versus
less critical items, we consider two rather extreme
values v ∈ {1.2, 7}. We use the uniform distribution for
supply. It seems reasonable for the low end to be zero
(e.g., disaster completely destroys local supply, or the
product is simply not available in the area). Typically,
the number affectedmay be a relatively small fraction
of the population in the area of the disaster. If fraction is
small enough, then there may be enough to cover all
affected. Based on this, the upper limit of supply at 95%
of the maximum demand of 7000 (i.e., Q∼U(0,6650)).
We consider two rather extreme values for local
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supply cost, α ∈ {0.4, 0.8}. We set a base level of
emergency fund at a level sufficient to cover 10% of
demand and increased this by absolute of one-third
and two-thirds (i.e., R ∈ {0.1αD, 0.43αD, 0.76αD}). We
use stochastic optimization with 100,000 trials per
simulation via the Analytic Solver Platform from
Frontline Systems to generate the results.

Given the space limitation, we only illustrate a few
plots, although the insights hold based on over 6,000
numerical experiments. Figure 3 reports UB, LB, and
optimal prepo for cases of highly critical and less
critical items per cycle for both independent demand/
supply (panels (b) and (d)) and demand/supply with
perfect negative correlation (panels (a) and (c)) as budget
varies. Figure 5 reports optimal prepo and optimal
average costs for both highly critical and less critical
items when the emergency fund changes.

We offer four observations. First, the basic patterns
in prepo curves and expected cost curves are rela-
tively stable across changes in correlation, changes
in shortage cost rate, and changes in local supply cost
ratio.We see diminishing return to increases in budget
and higher marginal value of budget for the high
shortage cost item, both of which are to be expected.

In general, optimal prepo and bounds are larger when
(i) demand and supply are negatively correlated,which
motivates more investment on prepo for regions with
limited supply, and (ii) the item is more critical.
Second, Figure 3 shows when budget is above

the threshold (b > b̄), optimal prepo (and the upper
bound) is the same for α � 0.4 and α � 0.8, aligned
with the results in Propositions 2 and 3. However,
when the budget is low, optimal prepo is decreasing in
α for the less critical item, whereas it is increasing for
themore critical item. This is because of the additional
dimension in the trade-off that arises when budget is
below the threshold (as discussed after Proposition 4;
i.e., balancing the cost of an excess local budget
against the cost of an insufficient local budget). In
particular, an increase in α increases budget pressure
(fewer units in total can be purchased), which puts
downward pressure on optimal prepo. On the other
hand, an increase in α reduces the savings from
substituting spend on prepo with spend on local
supply, which puts upward pressure on optimal
prepo. At v � 1.2, the substitution savings play a
relatively large role (because the consequence of a
global shortage is relatively less), resulting in a decrease

Figure 3. (Color online) Panels (a) and (b) Show the Optimal Prepo x∗ and Lower and Upper Bounds (x∗ and x̄∗) When v � 1.2,
and Panels (c) and (d) Show the Same Values When v � 7

Notes. Other parameters: α ∈ {0.4, 0.8}, i � 0.2, μT � 1/6, b ∈ [250, 8000], γ � 500, D ∼ U(500, 7000), and Q ∼ U(0, 6650). Emergency fund is
sufficient to cover 10% of demand, and budget threshold, b̄, equals 6,083 for panel (a), 5,584 for panel (b), 8,201 for panel (c), and 8,687 for
panel (d). (a and c) Perfectly negatively correlated D − Q. (b and d) Independent D − Q.
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in x∗ as α increases. As v increases, budget pressure
becomes relatively stronger, causing the directional
effect of increasing α on x∗ to reverse at v � 7. The
overarching insight is that the behavior of the system
becomes much more complex and nuanced because
of the added dimension in the prepo cost trade-offs
under a limited budget.

Third, the curves provide some insight into the
relative accuracy of the UB versus the LB. When
budget is small (e.g., below the threshold), we see
that optimal prepo lies between the UB and LB.
However, optimal prepo tends to be closer to the LB

for independent Q −D and closer to the UB for cor-
related Q −D. The LB uses simplified expression for
marginal cost and marginal savings that exploits
bounds on probability expressions that are exact
whenD andQ are independent. Thus, when budget is
low, the LB gap becomes relatively tighter when D
and Q are independent, compared with negatively
correlated. Figure 4 provides a summary of approx-
imate solutions with respect to changes in local price,
shortage cost, and emergency fund.
Fourth, as shown in Figure 5, the value of emer-

gency funds is somewhat similar for independent and

Figure 4. Approximate Solution: Optimal Prepo Is Closer to Upper Bound or Lower Bound Depending on Local Price, Item
Shortage Cost, and Local Supply Reliability

Figure 5. (Color online) Panels (a) and (b) Show the Optimal Prepo x∗, and Panels (c) and (d) Show the Corresponding Average
Cost for Critical Item (v � 7) and When Emergency Fund Varies from 10% to 43.3% and 76.7%

Notes. Other parameter values are i � 0.2, μT � 1/6, b ∈ [250, 8000], γ � 500, α � 0.4, D ∼ U(500, 7000), and Q ∼ U(0, 6650). (a and c) Perfectly
negatively correlated D − Q. (b and d) Independent D − Q.
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correlated cases, with directional effects as expected
(e.g., as emergency funds increase, prepo increases,
and expected cost decreases). However, the effects
disappear when budget is high (i.e., when budget is
above the threshold, an increase in emergency funds
has no effect on prepo or cost). Our experiments show
that emergency funds generate more value when
demand/supply is independent, and shortage cost is
very high.

Figure 5 triggers a question of whether (orwhen) an
increase in emergency fund is more or less valuable
than an increase in initial budget. On one hand, an
additional dollar (on average) in the emergency fund
can potentially be more valuable because it aligns
with demand (e.g., donations are high when demand
is high). On the other hand, an additional dollar in the
initial budget is more flexible—it can be used for
prepo or local supply. Figure 6 shows the value of an
increase of $500 added to the initial budget versus
$500 average added to the emergency fund at dif-
ferent budget levels. The figure illustrates diminish-
ing return to increases in the emergency fund, as well
as to increases in budget (as illustrated in thisfigure as
well as Figure 5). Whether an increase in the emer-
gency fund adds more or less value than a similar
increase in the budget depends on parameter values;
neither funding source dominates the other. How-
ever, the value of an increase in the emergency fund
decreases as negative correlation increases. This is
because of greater misalignment between the amount
of emergency funds available and the amount of local
supply (e.g., when demand is high, donations tend to
be high, but local supply tends to be low). Our results
suggest that the allocation of efforts to raise funds
from different sources will likely require a balanced
strategy to achieve the greatest value.

Panels (a) and (b) of Figure 7 show optimal prepo
for review periods of one month, six months, and
static optimal prepo (e.g., tx � ∞). Panels (c) and (d) of

Figure 7 show the change optimal prepo as the review
period increases from one to six months and from one
month to infinity (i.e., staticmodel). FromProposition 7,
we know that optimal prepo is increasing (in theweak
sense) in the review period length. However, across
all parameter combinations in our experiments, we
find that changes in the review period length have a
relatively small effect on optimal prepo, as illustrated
in the figure. There is no difference in optimal prepo
as the length of the review period increases when the
budget is either very small or very large. Differences
do arise at moderate budget levels but are generally
small relative to optimal prepo.

7. Extension: Prepo Prioritized over
Reactive Stock

For some settings and relief items, the local price
may be higher than prepo. Our preceding analysis
assumes that reactive stock is less expensive than
prepo (i.e., α ≤ 1). In this section, we summarize how
our main conclusions change if the inequality is re-
versed. We refer the interested reader to Eftekhar and
Webster (2020) for additional detail.
The analysis of our model with α < 1 leads to two

main conclusions on the structure of the prepo op-
timization problem and two main results that are
consequences of this structure. The two main struc-
tural conclusions are (1) that the cost function is
convex in prepo and (2) that there is a threshold
budget that delineates a structural change in the
prepo optimization problem. The budget threshold
corresponds to the value at which the constraint on
local spend is assured to be nonbinding. Above the
threshold, the structure is such that the optimization
problem exhibits a classic newsvendor-type trade-off.
Optimal prepo is determined from the fractile of a
single random variable (i.e., the difference between
randomdemand and random local supply).When the
budget is below the threshold, an additional trade-off

Figure 6. (Color online) Plots Show the Savings of Adding Emergency Fund Vs. Increasing the Initial Budget

Notes. Parameter values are α � 0.8, v � 7, i � 0.2, μT � 1/6, b ∈ [250, 8000], γ � 500, D ∼ U(500, 7000), and Q ∼ U(0, 6650). (a) Negatively
correlated D − Q. (b) Independent D − Q.
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arises in the determination of optimal prepo: the cost
of excess local budget versus the cost of insufficient
local budget. The effect is to decrease the marginal
value of prepo, which translates to a reduction in
optimal prepo as budget is reduced. An understand-
ing of this threshold and the corresponding change in
the drivers of marginal value of prepo underlie two
main results. First, the monotonic marginal value
function allows us to identify upper and lower bounds
on optimal prepo that are easy to compute and inter-
pret. Second, an understanding of the (well-behaved)
marginal value function provides the intuition into the
directional effects of changes in parameters on opti-
mal prepo.

How are these main conclusions and consequent
results affected by α > 1? The two main conclusions
continue to hold. The cost function continues to be
convex in prepo. However, the proof of this result
requires more nuanced arguments and hints at ad-
ditional complexity. There is a threshold budget that
delineates a structural change in the prepo optimi-
zation problem, and as for α < 1, this threshold cor-
responds to the value at which the constraint on local
spend is assured to be nonbinding.

As we look deeper, we see structural differences.
When budget is above the threshold, the optimization
problem does not conform to a newsvendor-type
structure for which the optimal solution is determined
by the fractile of a random variable. In particular,

optimal prepo is obtained from an identity containing
fractiles of two random variables: (1) random demand
and (2) difference between random demand and ran-
dom local supply. However, the key structural differ-
ence arises when budget drops below the threshold.
In particular, the marginal value of prepo is monotonic
(increasing) in budgetwhenα < 1 and is nonmonotonic
when α > 1. This difference in the marginal value
function affects the behavior of the system in two
ways that contrast starkly with the case of α < 1. First,
the model is no longer amenable to simple upper and
lower bounds (i.e., the bounds from α < 1 are no
longer valid). Second, the nonmonotonic marginal
value function leads to some directional effects of
changes in parameters on optimal prepo that are
opaque and surprising, the most salient of which are
the impact of an increase in budget and an increase in
prepo cost. Intuition might suggest that prepo will
increase in budget (as is the case of α < 1), especially
because it is prioritized over reactive stock. However,
increases in budget may lead to decreases in optimal
prepo (a phenomenon that explains why the upper
bound of α < 1 does not translate to α > 1). Similarly,
it is possible that investment in prepo will increase as
prepo becomes more expensive. These phenomena
are more likely to arise when local supply is relatively
plentiful and the cost of reactive stock is relatively
small compared with shortage cost. The intuition for
this result is that the savings from additional prepo

Figure 7. (Color online) Panels (a) and (b) Show Prepo Levels for Different Review Cycles, and Panels (c) and (d) Compare the
Difference Between Prepo Levels When Review Cycle Increases

Notes. Parameter values are α � 0.4, v � 1.2, i � 0.2, μT � 1/6, b ∈ [250, 8000], γ � 500, D ∼ U(500, 7000), and Q ∼ U(0, 6650), and emergency
fund is sufficient to cover 10%. (a and c) Negatively correlated D − Q. (b and d) Independent D − Q.
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can drop precipitously as budget increases (or the
cost of prepo decreases) reduce the likelihood of a
global shortage.

8. Summary and Conclusion
Through extensive interactions with HOs and their
executives, we identified several important features
in HOs’ practices and challenges that have not been
explored in the operations management literature on
relief item supply management. These features in-
clude the distinction between local supply (reactive
stock) and central supply (prepo stock); the high
transportation cost of prepo stock (that makes it more
expensive than the reactive stock); the importance
and priority of reactive stock, a budget constraint, and
the uncertainty of demand and local supply; and the
inflows of funds such as donations during each de-
cision cycle and at the onset of a disaster event. Al-
though practitioners must constantly cope with these
complexities, there is no clear guideline on how to act.
To fill this gap between theory and practice, in this
paper we develop an analytical framework that ex-
plicitly takes into account these new features. We
obtain closed form solutions and efficient algorithms
to determine the optimal prepositioned stock level in
anticipation of the next disaster event, with consid-
eration of uncertainty of time to the next event and
the associated holding cost, uncertainty of demand,
priority of using (uncertain) local supply, and un-
certainty of budget. We consider both a static model,
in which we make the prepo decision only at the
beginning of the decision cycle, and a dynamicmodel,
in which we can periodically purchase prepo before
the next disaster event. We also derive and discuss
extensive comparative statics analysis to reveal in-
sights. Finally, we conduct an intensive numerical
experiment to illustrate various effects. The design
of the numerical experiment is inspired and re-
sembles the real response operations of a large in-
ternational HO.

The main lessons from our study can be summa-
rized as follows. First, we provide simple and easy to
implement methods (e.g., lower and upper bounds
computed using Excel) that a manager may use to
identify ranges of reasonable prepo values under
differing assumptions of cost rates and probability
distributions of demand, local supply, and time be-
tween disasters. Additionally, our comparative statics
results (Propositions 3 and 4) help amanager to gauge
the directional effects of changes in parameter esti-
mates. As a related but more speculative finding, our
numerical results hint that it is less costly to error on
the side of too little prepo than too much prepo. In
particular, we find that even when “true” optimal
prepo is midway between lower and upper bounds,
the cost at the lower bound is closer to the optimal cost

(e.g., cost function is flatter to the left of optimal than
to the right). In the face of limited data, a manager
may wish to favor prepo values on the left side of the
range of plausible values. In practice, it is often dif-
ficult to obtain accurate estimates of parameters. Our
methods and results can help a manager identify a
prepo target that takes a reasonable middle ground
when data for estimating parameters and probability
distributions are limited.
Second, initiatives to improve demand forecast

accuracy and/or reduce the negative correlation be-
tween demand and local supply serve to shrink the
mismatch cost between demand and supply. The
higher the shortage cost rate, the larger the benefit from
such investment. This conclusion is not surprising.
However, we identify an interaction between such
initiatives and the level of optimal prepo stock that can
amplify the value for critical items and attenuate the
value for noncritical items (i.e., because of loosening
versus a tightening of the budget constraint). Themain
lesson is that a focus on mismatch cost may understate
the value of such initiatives for critical items.
Third, our models allow a manager to estimate the

value of relaxing a binding constraint on local spend.
Large HOs may have sufficient reserves (or access to
a line of credit) that can be spent on local supply
during the immediate relief period with assurance
that these reserves will be replenished through do-
nations during the event.We know from Proposition 2
that the complex four-dimensional trade-off that arises
in the presence of a binding local spend constraint
dissolves into a relatively simple two-dimensional
trade-off when the constraint is relaxed (see discus-
sion following Proposition 2). Solution ease is one
practical advantage of unrestricted local spending.
However, there is a more important consideration. In
particular, there is a question onwhen the elimination
of the local spend constraint will, and will not, have
a large impact on alleviating human suffering. The
question is meaningful because HOs that are tightly
constrained on local spendmay consider initiatives to
mitigate such a constraint (e.g., line of credit under-
written by large donors that is available during the
immediate relief period). Such an initiative requires
effort on the part of HO management and a com-
pelling case for its value. Our model can be used to
make such a case through quantification of value.
Most of these results and insights are derived based

on the assumption that reactive stock is less expensive
than prepo stock. When the situation is reversed, the
main insights remain, but detailed solutions become
more complex.
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Endnotes
1The remaining 4% is the cost of capital.
2As a minor technical point, mc(x) and ms(x) are proportional to the
truemarginal prepo cost and savings functions by a probability factor
(see the proof of Proposition 5). The same observation applies to the
lower- and upper-bound functions. We exclude this proportionality
factor in order to facilitate comparison with marginal functions from
the static model, and we refer to these functions as marginal cost
and savings.
3 See https://www.emdat.be/ (accessed date March 15, 2019).
4 See https://glidenumber.net/glide/public/search/search.jsp (accessed
date March 15, 2019).
5Empirically, a variety of arrival processes show evidence of expo-
nentially distributed interarrival times (e.g., outbreaks of wars, tor-
nadoes (Richardson 1956, Hayes 2002)). Theoretical support for this
observation comes from the Khintchine limit theorem: under fairly
mild assumptions, the distribution of time between arrivals for a
process that is a superposition of n independent arrival processes
approaches exponential as n increases (Khintchine 1960, Feller 1965).
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