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E very year, humanitarian organizations assign a sizable portion of their limited financial resources to procure, operate
and maintain operating assets, without which service delivery would be nearly impossible. In this study, using vehi-

cles to represent operating assets, we identify policies for sizing and allocating operational capacity to minimize the
expected deprivation costs in a humanitarian development context. First, we develop a stochastic dynamic programming
model, and then an efficient heuristic policy that considers the interaction of asset purchasing and operating decisions
when the budget is uncertain. Based on a dataset provided by a large international organization, we estimate the parame-
ters of our model to run numerical experiments. Results demonstrate the following: (i) Although budget uncertainty
increases the expected deprivation costs and decreases capacity utilization, the negative impact of budget uncertainty is
mitigated if budget savings between periods is allowed; (ii) a policy for minimizing the expected deprivation costs over
time may avoid using all available assets in all periods; (iii) in situations in which the variation in the criticality of mis-
sions is large, both the expected deprivation costs and fleet utilization decrease; and (iv) in most conditions, a centralized
asset procurement model outperforms a decentralized model, not only in terms of logistic costs but also in minimizing
the expected deprivation costs.
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1. Introduction

Although humanitarian organizations (HOs) need to
maintain an adequate level of relief items (such as
blankets, medicines and vaccines) to satisfy their ben-
eficiaries’ primary needs, these organizations require
sufficient operating assets (such as vehicles and medi-
cal facilities) to deliver services. Operating assets are
the support equipment used to deliver aid to regions
in urgent need. Typically, these assets are durable
items that supply services over multiple periods, are
often expensive to acquire and require costly regular
maintenance. However, a shortage of these assets
poses critical challenges for effective service delivery
in poor countries (McCoy and Lee 2014). Therefore,
HOs assign a sizable portion of their limited financial
resources to procure, operate and maintain operating
assets. For instance, during 2016, the acquisition,
repair, maintenance and depreciation of equipment
and operating assets cost World Vision International

a few millions of dollars.1 Due to the amount spent
relative to other expenses and due to its essential role
in service delivery, asset management is arguably the
most significant determinant of how effectively an
HO delivers on its mandate. Yet, to our knowledge,
even a change in the management team of a country
office may lead to a significant alteration in the num-
ber of operating assets while there is no instrument to
evaluate the value of the new policy. Indeed, the
idiosyncratic characteristics of humanitarian develop-
ment programs make decisions to acquire and use
operating assets a serious challenge. In this study, tak-
ing some of these characteristics into account, we ana-
lyze the impact of operating capacity on the
deprivation cost (i.e., beneficiaries’ suffering due to
insufficient humanitarian service delivery) and pro-
pose policies for purchasing and allocating operating
assets.
To develop our model, we focus on vehicles as rep-

resentatives of long-life operating assets, which are
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the centerpiece of humanitarian aid delivery (Eftekhar
and Van Wassenhove 2016). Vehicle procurement has
characteristics similar to the acquisition of many other
types of assets, such as power generators and water-
purification systems (Besiou et al. 2014), which makes
this practice a suitable choice for the present study.
Finally, vehicle fleet management is often cited as a
major challenge for humanitarian operations (de la
Torre et al. 2012); a well-managed fleet saves HOs
millions of dollars every year (Eftekhar and Van
Wassenhove 2016).2

By and large, vehicle procurement in humanitarian
settings is subject to many limitations. First, security
problems, the lack of reliable roads and poor infras-
tructure depreciate vehicles less predictably than
under normal conditions and increase the chance of
accidents (Eftekhar and Van Wassenhove 2016).
Therefore, instead of following a preset policy based
on age or mileage to dispose used vehicles, field
offices might get rid of used vehicles much later or
earlier than planned (Gu et al. 2018). Second, due to
the lack of funding for maintenance and fuel, the
available vehicles may not always be usable (McCoy
and Lee 2014). Third, a vehicle is a multiple-use asset
assigned to transportation missions with different
levels of criticality (e.g., staff transportation and mate-
rial distribution). Finally, unpredictability in funding
(Eftekhar et al. 2018, Natarajan and Swaminathan
2014) and earmarked funding (Besiou et al. 2014) add
additional limitations. These challenges are common
in managing most operating assets at the field. Con-
sidering all these aspects, we analyze the impact of
vehicle fleet management on society’s overall
expected deprivation costs. Furthermore, we propose
a heuristic to determine how many vehicles to buy
and how many to operate in each period to minimize
the expected deprivation and logistics costs over mul-
tiple periods.
To derive general insights from the characteristics

of our proposed policies under various operational
conditions, we formulate the problem as an infinite-
horizon Markov decision process (MDP). Inspired by
Holguin-Veras et al. (2013) and Vanajakumari et al.
(2016), we set minimizing the expected deprivation
costs as the objective function. Although different
from the usual settings (e.g., a linear cost function that
minimizes the response time or maximizes the
demand coverage), we believe this objective function
fits HOs’ ultimate goal more realistically. In addition
to the common cost functions that are vehicle acquisi-
tion costs, operating and fixed costs, and residual
value (Vemuganti et al. 1989), we take four essential
factors inherent to humanitarian settings into account:
(i) the randomness of individual vehicle disposal, (ii)
the unpredictability of budget availability, (iii) the
restricted budget to be spent during a certain time

window, and (iv) the variation in criticality of trans-
portation missions. Because obtaining the optimal
policy is analytically and numerically complex, we
develop an efficient heuristic policy, which has only
an average of 0.33% optimality gap (for the dataset
that we used), and derive managerial insights, based
on our numerical experiments. As the input for our
numerical experiments, we use field data to estimate
the model parameters empirically. Our dataset con-
tains information on 1074 Toyota Land Cruisers that a
large international humanitarian organization (here-
after, LIHO, due to confidentiality reasons) owned
from 2000 to 2015 in five countries of operations. We
applied Bayesian analysis method to obtain point esti-
mation for the variables of interest.
Our analysis shows that an increase in budget

uncertainty increases the expected deprivation costs
and decreases capacity utilization. However, we find
that the opportunity to budget savings between peri-
ods neutralizes the negative effect of budget uncer-
tainty on the expected deprivation costs. In addition,
the deprivation costs increase in harsh environments
where the probability of vehicle disposal is high.
Although field managers usually prefer to assign their
full operating capacity to upcoming demands (Ped-
raza Martinez et al. 2014), our results suggest that an
optimal policy that minimizes the expected depriva-
tion costs over time avoids operating all vehicles in all
periods. This policy is mainly due to the uncertainty
in the budget and random vehicle disposal that influ-
ences a forward-looking HO to adopt frugality. Fur-
thermore, results demonstrate that when the most
critical transportation missions are much more impor-
tant than the least critical ones, the expected depriva-
tion costs are lower than when the variations in the
criticality of the organization’s missions are small. In
other words, the average deprivation costs surges if
there is less variation in the criticality of the trans-
portation missions. Likewise, we observe that in situa-
tions where variations in mission criticality decrease,
fleet utilization grows. Finally, our numerical results
indicate that a centralized vehicle procurement model
(with a longer procurement lead time but a cheaper
purchase price) outperforms a decentralized model
(with a shorter lead time but a more expensive pur-
chase price) in minimizing the expected deprivation
costs over time.
Literature Review—Given the importance of asset

procurement and utilization in the commercial sector,
they have been the subject of significant research
(Rust 1985). Because we chose vehicles to represent
operating assets, we focused on references that con-
centrate on vehicle fleet management. The OM/MS
community has paid substantial attention to fleet
management—due to its pivotal role in order fulfill-
ment and cost magnitude (Turnquist and Jordan
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1986)—to find the optimal level of transportation
capacity under different circumstances. Attention has
been paid to vehicle replacement policies (Brosh et al.
1975), fleet sizing with deterministic demand but
stochastic travel time (Turnquist and Jordan 1986),
fleet sizing with stochastic demand (Papier and
Thonemann 2008, Slaugh et al. 2016) and optimal fleet
capacity allocation policies (Papier and Thonemann
2010, Savin et al. 2005). Scholars in this stream of liter-
ature study a variety of novel problems. Yet, the
results are not tailored to a humanitarian setting.
In a humanitarian context, fleet management in

relief operations has received much attention. Exam-
ples include aid distribution (Yi and Ozdamar 2007),
vehicle routing (Campbell et al. 2008, Vanajakumari
et al. 2016) and scheduling for victim evacuation (Bar-
barosoglu et al. 2002). The typical objectives of these
studies are to minimize service delivery time or to
maximize demand coverage. Compared to relief oper-
ations, the number of studies of fleet management
problems in development programs is smaller but the
topics are broader. Scholars study the vehicle supply
chain (Besiou et al. 2014), replacement policy and
vehicle reliability (McCoy and Lee 2014, Pedraza Mar-
tinez and Van Wassenhove 2013), field-vehicle utiliza-
tion (Eftekhar and Van Wassenhove 2016, Gu et al.
2018) and the fleet-sizing question (Eftekhar et al.
2014). The paper most similar to the present study is
that by Eftekhar et al. (2014) that develops a stylized
quadratic control model to determine the optimal
fleet size over time. The objective of their study is to
minimize the sum of operating costs and the cost
demand–capacity mismatch over an infinite time
horizon, where demand is deterministic but varies
frequently and all transportation missions are equally
critical. In addition to the vehicle replacement policy,
their model takes a deterministic budget limitation
into account and generates simple but practical
insights into fleet sizing in this context. Yet, it does
not take budget uncertainty, random disposal of vehi-
cles, procurement lead time, and differences in mis-
sion criticality, inherent to a humanitarian setting,
into consideration. In this study, we take one step for-
ward and analyze a more advanced setting. In addi-
tion, the objective function of our model is to
minimize human suffering due to a deficit in fleet
capacity, and it determines the right quantities of
vehicles to acquire and to operate. To the best of our
knowledge, such a setting has not been previously
studied.
The contribution of this study to the existing litera-

ture has three components. First, it extends the exist-
ing literature by conceding the limitations of and
characteristics specific to humanitarian operations,
such as demand variation, differences in mission criti-
cality, budget uncertainty and random vehicle

disposal. Second, it considers the joint decisions
regarding purchasing and operating vehicles, and
explicitly analyzes the interaction of the two deci-
sions. We show that these decisions are highly inter-
dependent when transportation missions have
different levels of criticality and the budget is uncer-
tain. Finally, we construct a model that retains the
dynamics enforced by these limitations and deter-
mine a heuristic policy that achieves close to minimal
expected deprivation costs over time, and that is flexi-
ble enough to be adapted to a variety of settings.

2. Model Description

In this section, we describe a model for vehicle fleet
sizing and allocation at the national (or field) office
level with the objective of minimizing the expected
deprivation costs. Therefore, we consider a case in
which, at the beginning of each period, the decision-
maker makes two decisions: (i) how many vehicles to
acquire, and (ii) how many vehicles to operate. These
decisions are made once she knows the total budget
available and the existing fleet size, given the demand
for transportation missions in the period. The term
“transportation mission” refers to a group of related
duties (e.g., distributing foods to remote communi-
ties, or administration tasks) that require vehicles to
serve a particular program in a certain period. Next,
we describe each component of our model.

2.1. Demand and Deprivation Cost
Similar to Eftekhar et al. (2014), we assume that the
office periodically predicts the demand for trans-
portation services assigned to different missions, and
provides estimates of the demand (i.e., the number of
required vehicles to fulfill all the projected missions).
Demand in humanitarian development programs is
usually predictable (Pedraza Martinez and Van
Wassenhove 2013), though it may vary over time
(Eftekhar et al. 2014). Accordingly, we allow for any
seasonal demand pattern with Dt as the demand in
period t, n as the number of demand phases in a sea-
sonal cycle, and Dm as the average demand. Let us
denote the demand phase of period t in the seasonal
cycle by xt. For example, the demand function can
take a sinusoidal form, as in Eftekhar et al. (2014).
If the office provides larger capacity (i.e., more

vehicles) than Dt, it causes additional operating and
fixed costs, and if it provides smaller capacity than
Dt, it fails to fulfill some transportation missions,
resulting in deprivation cost. Deprivation cost is “val-
ued as changes in human well-being” and measures
beneficiaries’ suffering from not receiving humanitar-
ian aid (Holguin-Veras et al. 2013). Although HOs’
ultimate goal is to alleviate the deprivation costs by
maximizing demand coverage, all transportation
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missions are not equally important; the impact of
some missions to alleviate human suffering might be
greater than others, which we consider as more critical
missions. Due to the resource limitation, prioritizing
the missions is inevitable (Gralla et al. 2014, Holguin-
Veras et al. 2013, Wang et al. 2017), and thereby the
office prioritizes its demands and assigns vehicles to
the most critical transportation missions (i.e., it
assigns the first available vehicle to serve the trans-
portation mission that has the largest potential to
reduce deprivation cost, the second available vehicle
to serve the second most important transportation
mission, and so forth). This prioritization leads to con-
vex behavior of the deprivation cost in the number of
vehicles assigned.
To prioritize missions, the office first has to estimate

the deprivation cost that can be avoided if a trans-
portation mission is fulfilled. One way to estimate it is
to use Stated Preference techniques, where an expert
or a group of experts are asked to value all transporta-
tion missions in terms of their impact and importance
(see, e.g., Holgu�ın-Veras et al. 2016, Wang et al. 2017).
Then, from a predicted set of transportation missions,
and their respective deprivation cost, the decision-
maker can estimate the differences in mission criticality
(i.e., the difference between the deprivation costs of
the most critical mission and the least critical mis-
sion).
In this model, we approximate the deprivation cost

by an exponential function. Using an exponential
function has several advantages. First, Holguin-Veras
et al. (2013) explain that deprivation cost should be
“monotonic, non-linear, and convex with respect to
the deprivation time,” and their results suggest that
an exponential function captures best this effect. Sec-
ond, the exponential function’s convexity properly
approximates the prioritization process discussed
above. Finally, an exponential function allows valuing
the relative importance of transportation missions by
a single parameter. Therefore, we define the per-per-
iod deprivation cost as

RtðatÞ ¼ eb½Dt�at�þ � 1; ð1Þ
where Rt is the deprivation cost in period t if the
office decides to assign at vehicles (at � 0) to serve a
proportion of the demand. Parameter b > 0 describes
the deprivation cost function’s convexity. It repre-
sents the level of differences in mission criticality
through the level of convexity of the deprivation
cost function. A high value of b implies that the
deprivation cost of the most critical transportation
mission is very different from the deprivation cost
of the least critical mission. On the opposite, an
extreme case of b ? 0 implies that all transportation
missions have the same level of criticality, and no

prioritization would be possible. Appendix A pro-
vides the table of symbols.
In order to simply interpret b, we compare it to a

Pareto analysis suggested by the United States Coast
Guard (USCG 2003) to prioritize missions in health-
related risk management. With a Pareto analysis, a
fraction m of the total deprivation cost is avoided by
fulfilling the most critical (1 � m)% of all potential
transportation missions. For example, a value of
m = 0.8 implies that serving only 20% of the most criti-
cal transportation missions avoids 80% of the depriva-
tion cost. Parameter b can be derived from m with the
following expression

ebDm � embDm ¼ mðebDm � 1Þ; 0:5\m\1: ð2Þ
Essentially, parameter m expresses the same concept

as b, but it is more intuitive to use in practice. We
therefore use m to report our numerical results but
keep b in the model description and analysis. In
Online Appendix OA-3, we provide an illustrative
example how to estimate the differences in mission
criticality from a set of transportation missions. Yet,
for the purpose of illustration, we refer to Figure 1
that provides examples of deprivation cost function
for two different values of m and a demand of D = 10
vehicles. Figure 1a shows the graph for m = 0.6, which
corresponds to b = 0.17, and Figure 1b shows the
value for m = 0.7, which corresponds to b = 0.39. For
conciseness, we use a common parameter b for any
demand phase. Note that our model and the solution
can be easily extended to period-specific values of b,
and to any other function which is convex and
increasing in the unmet demand.

2.2. Purchasing and Operating Costs
At the beginning of period t, the management decides
how many new vehicles to buy, denoted by ut, to add
to the existing fleet capacity, denoted by xt. Each pur-
chased vehicle costs p, and vehicles bought during
period t become effectively available in period t + 1
(i.e., there is a procurement lead time of one period).
Vehicle utilization imposes operating costs such as
maintenance, fuel and the driver’s salary, that are
captured by co [ 0 in our model. However, even
maintaining an idle vehicle in the field imposes fixed
costs in each period, such as a refreshing cost, work-
shop and office expenses, and a monthly insurance
fee, denoted by cf � 0.

2.3. Financial Resources
At the beginning of each period, there is a budget
available for operating the fleet, SBt, which consists of
three components. First, the office receives a random
budget, Kt, which is independent and identically dis-
tributed among periods, with a mean of l and
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standard deviation of r. Second, the office has some
(non-earmarked) budget saved from the previous
periods that is available at the beginning of period t,
St�1. The savings in each period depend on the initial
budget, SBt, and the amount spent during that period,

Stðat; utÞ ¼ SBt � cfxt � coat � put: ð3Þ

Third, the office earns revenue through selling used
vehicles. Due to the environmental conditions, in
which HOs operate vehicle disposal may not follow a
preset policy of 5-year or 150,000 km whichever
comes first (Gu et al. 2018; Pedraza Martinez and Van
Wassenhove 2013). This is confirmed with Figure 2
showing that the age (of 5 years) and cumulative
odometer (of 150,000 km) play no significant role to
dismiss a vehicle. Previous research (Eftekhar and
Van Wassenhove 2016), and our further data analysis
indicate that many vehicles are disposed following
unpredictable events, such as accidents. Accordingly,
it is reasonable to assume that at the end of each per-
iod a random number of vehicles are disposed of, and
an average residual value, r (0 ≤ r < p), for each sold
vehicle is obtained. In this setting, it means that it is
less predictable which vehicle(s) will be disposed
next. Yet, depending on the age, accident history, and
other factors, an individual vehicle may have a lower
or higher chance of failure. In Appendix D, we pre-
sent an extension of the model where vehicles are cat-
egorized (e.g., based on age, cumulative odometer, or
other factors) into high- and low-cost status.
We use an average dismissal rate of c that a vehicle

is disposed of in a given period. This implies that the
available fleet size at the beginning of a period, LðxtÞ,
follows a binomial distribution with population xt
and success probability 1 � c. We also tested this
assumption with our dataset (see section 4). A kernel
density estimation graphically supports our assump-
tion that the fleet size follows a binomial distribution,
and a chi-square goodness-of-fit test did not reject it
at the 1% significance level. For notational simplicity,
we define cL ¼ cf þ co þ cðp � rÞ as the average per-
period cost of a single vehicle at full utilization.

2.4. Dynamic Programming Model
Based on the above description, we define the order
of events in a certain period as follows: At the begin-
ning of period, the manager knows the allocated bud-
get to her fleet, Kt. Given the total available budget
SBt and fleet size xt, she decides on the number of
vehicles to operate, at, and the number of vehicles to
purchase, ut (which will be received in the next per-
iod). Finally, she realizes the number of vehicles still
available at the end of the period, LðxtÞ, after account-
ing for dismissed vehicles. Therefore, the state equa-
tion for the fleet size in period t + 1 is

xtþ1 ¼ LðxtÞ þ ut; ð4Þ
and the state equation for the available budget in
period t + 1 as

SBtþ1 ¼ St þ rðxt � LðxtÞÞ þ Ktþ1: ð5Þ
For the numerical analysis, we limit the fleet size to
a maximum of xmax and the budget to SBmax, which
seems reasonable, given the typical budget limita-
tions in the humanitarian sector. The maximum val-
ues can be set sufficiently high so as not to affect
the results. We assume that the financial donations
are sufficient to at least cover the fixed costs; that is,
Kt � cfx

max. This assumption leads us to the follow-
ing model, in which the logistics costs are taken into
account through the budget constraints:

J0ðx0; SB0;x0Þ ¼ min E lim
N!1

1

N

XN
t¼0

RtðatÞ
 !

; ð6Þ

subject to

at � xt; ð7Þ

St ¼ SBt � cfxt � coat � put; ð8Þ

SBtþ1 ¼ minfSt þ rðxt � LðxtÞÞ þ Ktþ1; SB
maxg; ð9Þ
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Figure 1 Deprivation Cost as a Function of Transportation Missions with Demand D = 10 (the solid line refers to the cumulative deprivation costs)
[Color figure can be viewed at wileyonlinelibrary.com]
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xtþ1 ¼ minfLðxtÞ þ ut; x
maxg; ð10Þ

xtþ1 ¼ tþ 1 mod nþ 1; ð11Þ

St; SBt � 0; and at; ut; xt 2 Zþ;xt 2 f1; . . .; ng: ð12Þ

The objective function with starting state x0, SB0

and x0, J0ðx0; SB0; x0Þ, minimizes the average
deprivation costs over an infinite horizon by
choosing the optimal values for purchasing, ut,
and operating vehicles, at, in each period. The first
constraint implies that the number of vehicles to
operate does not exceed the available number of
vehicles. Constraints (8)–(11) represent the state
equations introduced above. Constraint (12)
ensures the non-negativity of the state and deci-
sion variables. We consider an infinite horizon
because humanitarian development programs are
typically long-term programs without a prior
known ending (Polman 2011), while a finite hori-
zon model would be affected by the length of
horizon and other terminal conditions. Corollary 1
shows that the average optimal value and a sta-
tionary optimal policy exist (proof in Online
Appendix OA-1).3

COROLLARY 1. The limit of Equation (6) exists.
Furthermore, there is a stationary average cost policy for
the above MDP model.

3. Heuristic Development

The optimal policy of our model does not have the
typical monotone, switching-curve structure, because
the constraints of the model do not allow the opti-
mal value function to have the required second-
order properties, such as convexity. For instance,
decision variable a�t of the optimal policy is not
always monotone in any of the state variables xt,
xt or SBt, as we observed through our numerical
experiments. Likewise, decision u�t of the optimal
policy is not always monotone in xt. Furthermore,
our optimization model has three state variables
(xt, xt and SBt), two decision variables (ut and at)
and two stochastic elements (LðxtÞ and Kt), all of
which render the model too complex to be solved
numerically for problem instances of actual size.
Consequently, due to the limitations in analytical
and numerical methods, we propose a heuristic
approach, the Simultaneous Allocation Optimiza-
tion (SAO) heuristic, which generates close-to-opti-
mal decisions within a reasonable time window. In
this section, first we explain the benchmark policy,
and then we describe the mechanism of our heuris-
tic method.

3.1. Benchmark Policy
A key aspect of commercial fleet management is that
serving demand directly leads to cash inflow that can
be used to pay for the operating and fixed costs (e.g.,
Papier and Thonemann 2008). Accordingly, it is opti-
mal to serve as many demands as possible, that is, to
operate all the capacity in the current period, as long
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as the revenues of the marginal transportation mis-
sion exceed the operating costs. This yields a myopic
policy

abt ðxt; SBtÞ ¼ bmin xt;
SBt � cfxt

co
;Dt

� �
c; ð13Þ

where abt ðxt; SBtÞ denotes the number of vehicles
operated, which is constrained only by the fleet size,
the available budget to cover the operating costs
and the demand. Furthermore, in the commercial
sector, as long as the average lifetime revenue from
a vehicle exceeds its purchase and operating cost, it
is reasonable to fulfill the demand completely. This
trade-off implies an order-up-to purchasing policy to
fill the gap between demand and capacity (i.e., the
fleet size) in the next period and leads to the pur-
chasing decision

ubt ðxt; SBtÞ ¼ min

bSBt � cfxt � coabt ðxt; SBtÞ
p

c; ðDtþ1 � bxtð1� cÞcÞþ
( )

;

ð14Þ
where ubt ðxt; SBtÞ denotes the number of vehicles to
be purchased in period t. The first argument in
Equation (14) is the maximum number of purchases
limited by the available budget, and the second
argument stands for the order-up-to policy. This
policy seems to correspond to the current practice in
the humanitarian setting as well. Our interviews
with humanitarian practitioners4 indicate that the
conventional wisdom is to completely fulfill demand
whenever sufficient capacity is available. This myo-
pic behavior also corresponds to Eftekhar et al.’s
(2014) linear programming model, and so we use it
as a benchmark for our heuristic.

3.2. Development of the SAO Heuristic
The goal of our SAO heuristic is to minimize the
expected deprivation cost over time. The heuristic
allocates the available budget among the decisions to
purchase new vehicles, to operate a fraction or all of
the available vehicles and to save part of the available
budget for future operations. The heuristic estimates
the marginal reduction in expected deprivation costs,
the social gain, of every possible amount of operating,
purchasing and saving. Then, it applies a portfolio
optimization to allocate the available budget to these
three allocation options such that the estimated social
gain is maximized.
Therefore, to understand the mechanism of the

heuristic, it is critical to realize how the marginal
value functions are estimated. At the beginning of
each period, the management deducts the fixed costs

from the budget and decides how many additional
vehicles to buy and how many vehicles to operate.
The number of vehicles that are assigned to opera-
tions has an immediate impact on the social gain in
the current period. In contrast, the portion of the bud-
get to be saved and used for the future and the num-
ber of vehicles to be operated in the next periods
guarantee the continuity and persistence of opera-
tions in the future. From Equation (1), the social gain
from operating at vehicles in period t is given by

Va
t ðatÞ ¼ ebDt � eb½Dt�at�þ : ð15Þ

Due to the uncertainty in the budget and in the
number of available vehicles in future periods, as well
as the limitations on the number of operating vehi-
cles, it is difficult to calculate the marginal gain from
purchasing one additional vehicle. Therefore, we con-
sider the fleet’s aggregated reliability during a vehi-
cle’s average operational life and use an
approximation. To do so, we assume that the fleet size
is affected by ut only in period t + 1; for periods after
t + 1, the fleet size is adjusted by further purchasing
decisions ðutþ1; utþ2; . . .Þ.
In addition, due to the budget limitations, it is rea-

sonable to assume that the HO cannot afford to own
and operate a capacity (fleet of vehicles) larger than a
certain threshold (i.e., an upper bound). To determine
this threshold, we use a simplified version of the opti-
mization model (6) in which all variables are continu-
ous and all stochastic elements are replaced by their
expected values (i.e., Ktþ1 ¼ l, and
LðxtÞ ¼ ð1 � cÞxt). We denote the optimal number of
vehicles to operate in this simplified problem by �at.
Read Appendix B for the details of the deterministic
formulation and for a closed-form solution of the
deterministic model when demand is constant.
With this information, we can estimate the expected

social gain from purchasing additional vehicles in
period t, Vu

t , by considering the expected social gain
in the next period, assuming that the decision-maker
will not operate more than �atþ1 vehicles. Therefore,
we approximate the social gain of purchasing ut vehi-
cles, given the current fleet size xt, by

Vu
t ðut; xtÞ ¼ ELðxtÞ Va

tþ1ðminðLðxtÞ þ ut;�atþ1ÞÞ
�

�Va
tþ1ðminðLðxtÞ;�atþ1ÞÞ

�
¼
Xxt
l¼0

PðLðxtÞ ¼ lÞ eb½Dtþ1�minðl;�atþ1Þ�
�

�eb½Dtþ1�minðlþut;�atþ1Þ�
�
:

ð16Þ

In other words, Equation (16) estimates the differ-
ence between purchasing ut vehicles and not pur-
chasing the vehicles. Considering the randomness of
vehicle disposal at the end of the current period,
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this equation evaluates the expected difference in
social gains in period t + 1 between the two options.
Next, we need to estimate the expected social gain

from saving some of the budget for future periods.
Estimating the impact of saving on future social gain
is also challenging because the saved budget can be
allocated either to operating or to purchasing at any
time period in the future. We fit a parametric function
to estimate the value of saving, VsðsjhÞ, and adjust the
degree of concavity between these points with an
independent parameter. As the deprivation cost func-
tion itself consists of exponential functions, we define
VsðsjhÞ accordingly and propose

VsðsjhÞ ¼ eb
0hŜ � eb

0ðhŜ�sÞ if s\Ŝ;
ebDm otherwise,

�
ð17Þ

where Ŝ ¼ SBmax � rcl=cL � l is the upper thresh-
old for the savings, l=cL is an estimation of the fleet
size, and b0 is a coefficient of function Vs that can be
determined from the model parameters, and h is a
parameter that determines the degree of concavity
of the savings function. Figure 3 shows the behavior
of VsðsjhÞ under different values of the heuristic
parameter h. We observe that larger values for h put
a higher marginal value on savings and lead to a
forward-looking behavior, whereas smaller values of
h favor more myopic strategies (i.e., undervaluing
future risks). Therefore, as a rule of thumb, larger
values of h that tend to save more of the budget are
suitable for situations with high uncertainty and lar-
ger variation in mission criticality (i.e., high values
for b). Each value of h results in a different SAO pol-
icy, because a different savings function Vs is used.
To numerically determine the optimal value for h,
h�, we use simulation to obtain the average perfor-
mance, that is, the average deprivation cost under
different values of h and select the value for h� that
minimizes the average deprivation cost. For

searching the value, we use the Quadratic Interpola-
tion method (Bertsekas 1999). A numerical proce-
dure for approximating VsðsjhÞ and for determining
b0 is explained in detail in Appendix C.
After estimating Va

t , V
u
t and Vs, we have to solve

the following allocation model to determine the deci-
sions of the SAO heuristic:

max
uht ;a

h
t

Va
t ðaht ÞþVu

t ðuht ;xtÞþVs SBt�cfxt�coa
h
t �puht jh

� 	� 	
;

ð18Þ
subject to

cfxt þ coa
h
t þ puht � SBt; ð19Þ

aht � xt and ð20Þ

aht ; u
h
t 2 Zþ: ð21Þ

With the optimal value h�, we find the heuristic
decisions for the number of operating and purchasing
vehicles, which we denote by aht ðxt; SBt; h

�Þ and
uht ðxt; SBt; h

�Þ, respectively. The following proposi-
tion establishes the second-order properties of the
optimization model (18), which can be used to design
an efficient algorithm to solve the problem within a
short time in an online fashion (i.e., in every time per-
iod in which the model is used). The proofs are shown
in Online Appendix OA-1.

PROPOSITION 1. The maximization function in the opti-
mization model (18) is (non-strictly) concave in aht and
in uht and (non-strictly) sub-modular in aht and uht .

Proposition 1 implies that aht and uht are non-
decreasing in the available budget SBt, which we can
use to further restrict the search space of the solution
to Equation (18). Finally, the computation of the three
functions Va

t , V
u
t and Vs and the optimal parameter h�

can be done once in the beginning and stored in
memory.

3.3. Sensitivity Analysis
In this subsection, we discuss how the decisions of the
SAO heuristic depend on the model parameters.
Proposition 2 unveils limits on the average fleet size,
the operating level and the expected deprivation costs
(proof in Online Appendix OA-1).

PROPOSITION 2. For the situation in which the average
donations are less than the average cost to fulfill the
demand completely (i.e., l � cLDm), and the limits xmax

and SBmax are sufficiently high, we have the following
results for any fleet management policy:

Figure 3 Estimated Social Gain from Saving (V sðsjhÞ) for Different
Values of h [Color figure can be viewed at wileyonlinelibra
ry.com]
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1. It holds that l ¼ ðcf þ cðp � rÞÞEðxtÞ þ coEðatÞ.
2. The expression l=cL is a lower limit for the average

fleet size, EðxtÞ, and an upper limit for the average
operating level, EðatÞ.

3. The expected deprivation costs are bounded below
by

EðRtÞ� e
bðDm� l

cL
Þ � 1:

Part 1 of Proposition 2 implies that for a given aver-
age budget (l), an increase in the average fleet size by
one vehicle necessitates a reduction in the average
operating level of co=ðcf þ cðp � rÞÞ vehicles. As
expected, because the average budget and the resid-
ual value of a used vehicle (r) have a positive impact
on the total budget, they increase the bound l=cL on
the fleet size and the operating level. However, it is
easy to see that the bound l=cL decreases in fixed
costs, cf , operating costs, co, purchase price, p, and the
probability of vehicle disposal, c. This result implies
that by decreasing the vehicle procurement costs (e.g.,
through a centralized procurement policy), fleet oper-
ating costs, vehicle depreciation costs and minimizing
the chance of vehicle breakdown and accidents, man-
agement will save a larger portion of the budget that
eventually enables it to fulfill additional critical trans-
portation missions in the future. Therefore, a well-
framed fleet management that maintains vehicles
properly and trains drivers frequently seems to
decrease not only the monetary costs of fleet manage-
ment but also the expected deprivation costs.

4. Numerical Experiments

To avoid using synthetic data as inputs of our
numerical experiments, we use field data to esti-
mate the model parameters. Based on a dataset pro-
vided by the LIHO, we obtain point estimation for
the variables of interest. Our dataset contains infor-
mation on 1074 Toyota Land Cruisers that the LIHO
owned from 2000 to 2015 in five countries; Iraq,
Kenya, Liberia, Syria and Sudan (southern part—
now South Sudan) that during the past few years
have experienced different types of disasters, such
as war and political conflicts, hunger and poverty.
The LIHO has been among the leading organiza-
tions that supply a wide range of humanitarian ser-
vices to these countries.5

Our dataset contains information on each vehicle’s
identification number, date of purchase, purchasing
price, number and cost of accidents, maintenance his-
tory and operating costs, total mileage, mission type,
and the location (office) in which the vehicle was
used. We also know when and how a vehicle has been
disposed of (i.e., sold, donated or scrapped) and its

residual value. Furthermore, the dataset provides
information on the monthly fleet size in each country
over a period of 15 years. Through the data of mainte-
nance history, we have information about the reason
and cost of each repair, and how many days a vehicle
was off the road. Data shows that only <5% of all
repairs make a vehicle unavailable for 14 days or
longer. Therefore, in our numerical experiments, we
do not explicitly consider vehicle unavailability.

4.1. Parameter Estimation
Similar to Eftekhar et al. (2014), our model is based on
vehicle monthly utilization, and we assume a generic
average usage value for each variable. To calculate
the average operating cost, we took into account each
vehicle’s total repair and preventive maintenance
costs, accident cost, and fuel and driver cost based on
the vehicle’s cumulative odometer. Then, we divided
this cost by vehicle age. The first two cost components
were directly found from our dataset. However, to
calculate the third component, we used the average
fuel and driver cost per kilometer in each country of
operations that was provided by a LIHO expert. Like-
wise, we calculated the average fixed cost of keeping
an additional vehicle in the fleet, considering driver
training and the refreshing cost, management and
technical staffing cost, workshop and office cost, and
monthly insurance cost. These data were also directly
provided by an LIHO expert.
For the point estimations, we applied Bayesian

analysis that relies on the assumption that the
observed data is fixed while all parameters are ran-
dom quantities and provides more robust estimations
than frequentist methods (Kruschke et al. 2012). We
estimated the posterior mean, standard deviation and
minimum and maximum values of each variable. To
estimate the posteriors, we assumed a non-informa-
tive uniform prior distribution, and estimated the
posteriors via Markov chain Monte Carlo (MCMC)
sampling. A non-informative prior assigns equal
probabilities to all possible states of the parameter
space to rectify the subjectivity problem. To increase
the accuracy of our simulation results, we used 42,500
MCMC iterations with a warm-up period of 2500 iter-
ations. The parameter for the seasonal demand varia-
tion was obtained from the fleet size information in
the dataset. For the budget Kt, we used a truncated
log-normal distribution (see also Okten and Weisbrod
2000). The mean of Kt was also obtained from the fleet
size information, which gives a more accurate esti-
mate, and r was computed based on the variation in
the budget data. We set SBmax ¼ 20l with a step size
of co and xmax ¼ 1:8maxtðDtl=ðcLDmÞÞ. We set the
maximum values sufficiently high such that it does
not affect the results (it would be unlikely that these
values are reached in practice). The cost and demand
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estimations, as well as all parameters used in the
experiments are reported in Online Appendix OA-2.
We do not have information about the actual

demand. Therefore, we consider different scenarios of
the average demand, Dm, by keeping the average bud-
get constant while changing the funding level (i.e. the
ratio of the average budget to demand, l=ðcLDmÞ),
from 0.5 to 1. For example, we obtained Dm ¼ 24
vehicles for Sudan under 0.5 funding level and
Dm ¼ 12 vehicles under a funding level of 1.

4.2. Performance Assessment of the SAO
Heuristic
We used the Policy Iteration Method (Puterman 2005)
to derive the optimal policy for the problem described
by Equations (6)–(12). For each policy, we simulated
the system with 50 replication runs to determine the
average deprivation cost, J0. Each replication run con-
sisted of 82,000 iterations that included a warm-up
period of 2000 iterations. Due to the size of the prob-
lem instances, it is impossible to obtain an optimal
policy for fleet sizes larger than 30 vehicles in an
acceptable runtime. Therefore, to assess the optimal-
ity gaps, we focused on the data for Sudan and Syria
from 2000 to 2005, when both countries had compara-
bly small fleets. We kept the average budget constant
and systematically changed the average level of
demand to obtain the ratio of the average budget to
demand (i.e., funding level l=ðcLDmÞ) of 0.5, 0.75 and
1. We also changed the factor of mission criticality (m)
from 0.55 to 0.75. To make the scenarios comparable
when varying m, we scaled the total potential depriva-
tion costs to have the same total value under any m. In
all our numerical experiments, we used a three-month
interval as one period.
To analyze the performance of the heuristics, we

use the social service level (SSL) corresponding to the
ratio of the expected deprivation costs (obtained from
our model) to the total deprivation costs without serv-
ing any missions, that is,

SSL ¼ 1� EðRtÞ
ebDm � 1

; ð22Þ

where ebDm � 1 represents the highest possible
deprivation costs, when no transportation mission is
satisfied in any period. The social service level can
attain values between 0% and 100%, with larger val-
ues indicating lower deprivation costs.
In Table 1, we compare the optimal, heuristic and

benchmark policies, as well as the lower bound (see
Proposition 2), and report the expected deprivation
costs, the social service level and the optimality gap.
The values are determined with a simulation. The
number of replication runs of the simulation should
be chosen to allow for sufficient precision of the

results. Therefore, we have chosen the number of
replication runs to ensure that the half-width of the
95% confidence intervals are less than 1% of the aver-
age performance, that is, t0:025;N�1

sffiffiffi
N

p \ 0:01EðRtÞ,
with s referring to the standard deviation of the aver-
age deprivation costs across the different replication
runs, t0:025;N�1 being the value of the student’s t-distri-
bution, and N denoting the number of replication
runs. As shown in this table, the optimal policy
achieves a performance fairly close to the lower
bound. Furthermore, the SAO heuristic demonstrates
a performance close to the optimal policy, with an
average optimality gap of 0.33%, and it also outper-
forms the benchmark policy (an average optimality
gap of 6.6%) by a wide margin.

4.3. Sensitivity Analyses and Discussion
Next, assuming that our proposed model captures the
actual setting, we report the following insights based
on the dataset that the LIHO made available to us.
Unless otherwise noted, we used a funding level of
75% and a factor for differences in mission criticality
of m = 0.75. Furthermore, for the analyses in which we
varied the parameters cL, p or c, we also increased the
average budget (l) to keep the level of funding con-
stant. In this subsection, we report results of the opti-
mal policy for the two countries for which we could
obtain optimal results, that is, Sudan and Syria. We
also performed sensitivity analyses for all five coun-
tries, with the SAO heuristic and the benchmark pol-
icy. Due to space constraints, we summarize these
additional results in a separate report, which can be
obtained from the authors upon request.
Impact of Uncertainty and Variability—Our results

indicate that budget uncertainty and variability in
demand have negative consequences on the expected
deprivation costs and on fleet utilization (i.e., the
number of vehicles operated compared to the size of
the total fleet). These results, graphically shown in
Figure 4, are in line with conventional wisdom that
uncertainty renders the operations problem more
complex to manage. Moreover, an increase in the
probability of vehicle disposal, which corresponds to
a decrease in the average vehicle lifetime, increases
the expected deprivation costs (Figure 5a) and
increases the fleet utilization (Figure 5b and c). In fact,
a greater vehicle disposal probability pushes the office
to more quickly adjust the fleet size to demand sea-
sonality. However, all other things being equal, the
impact of the vehicle dismissal probability on the
expected deprivation costs seems to be less severe
than the impact of budget uncertainty (cf. Figure 4d).
Impact of Cost Parameters—With an increase in the

operating unit cost (co), the decision-maker is more
conservative and keeps resources for the more critical
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transportation missions (Figure 6a and b). Therefore,
as shown in Figure 6a, an increase in operating cost
causes a decrease in fleet utilization. In contrast, when
the vehicle purchase price increases, the decision-
maker will maintain a smaller fleet but will use the
available vehicles as often as possible, thus resulting
in higher fleet utilization (Figure 6c and d).
Impact of the Differences in Mission Criticality—Fig-

ure 7a indicates that the expected deprivation costs
decrease with the differences in the criticality of the
transportation missions (m). This means that in situa-
tions where the most critical transportation missions
are considerably more important than the least critical
transportation missions, the average expected depri-
vation costs are lower than in situations where the dif-
ference between the most and least critical
transportation missions is small. The reason is that in
the case of a large m, with a small budget, the HO can
address the transportation missions that are the main
concerns of the beneficiaries. Furthermore, when the
variations in mission criticality increase, the number
of operating vehicles (i.e., the number of transporta-
tion missions fulfilled) and the utilization of the fleet
decrease. This happens because the cost of missing an
important transportation mission in the future is high,
such that a forward-looking manager avoids covering
the less important transportation missions in the

current period and saves some of the budget for the
future; the management needs to protect the budget
for future more critical transportation missions. This
observation is confirmed by Figure 8, which indicates
that the level of budget savings between periods
increases with m.

4.4. Comparison between Benchmark Policy and
SAO Heuristic
Figure 9 is an illustrative example that shows the
trends that we consistently saw throughout our
numerical experiments. It compares fleet sizing and
operating capacity of the heuristic and benchmark
policies, assuming a m = 0.75 and a funding level of
0.75. Compared to the heuristic (and also to the opti-
mal policy), the benchmark results in a larger average
fleet size but lower operating level, and thereby much
lower fleet utilization. The larger fleet size is due to
the fact that the benchmark policy chases the demand,
which also leads to a larger variation in the fleet size.
The lower operating capacity is due to the fact that
the benchmark policy does not perform efficiently
when budget uncertainty exists, while one of the
goals of the heuristic is to cope with budget uncer-
tainty. However, Table 1 shows that the benchmark
policy performs similar to the heuristic when the
funding level is sufficiently large (i.e., both models

Table 1 Expected Deprivation Costs and Social Service Levels of the Optimal Policy, the SAO Heuristic, and the Benchmark Policy (data of 2000–
2005)

Country FL Policy

m = 0.55 m = 0.65 m = 0.75

Dep. SSL Gap T Dep. SSL Gap T Dep. SSL Gap T

Sudan 0.5 LB 97.19 60.0% — — 51.06 79.0% — — 14.61 94.0% — —
Opt. 98.26 59.5% — 26,467 53.20 78.1% — 20,145 16.60 93.2% — 19,974
SAO 99.17 59.1% 0.6% 876 53.95 77.8% 0.4% 1,023 17.25 92.9% 0.3% 723
Benc. 119.37 50.8% 14.6% 49 83.41 65.6% 15.9% 49 50.10 79.4% 14.8% 49

0.75 LB 43.70 82.0% — 17.38 92.8% — — 2.95 98.8% — —
Opt. 45.41 81.3% — 21,113 19.79 91.8% — 18,782 4.05 98.3% — 18,546
SAO 47.17 80.6% 0.9% 1,062 20.55 91.5% 0.3% 1,027 4.57 98.1% 0.2% 811
Benc. 62.82 74.1% 8.8% 50 41.45 82.9% 9.7% 50 22.99 90.5% 7.9% 50

1 LB 0.00 100.0% — — 0.00 100.0% — — 0.00 100.0% — —
Opt. 7.97 96.7% — 17,649 3.21 98.7% — 16,493 0.55 99.8% — 16,285
SAO 10.26 95.8% 1.0% 1,196 3.84 98.4% 0.3% 1,028 0.70 99.7% 0.1% 638
Benc. 10.49 95.7% 1.1% 49 4.00 98.4% 0.3% 49 1.76 99.3% 0.5% 49

Syria 0.5 LB 97.19 60.0% — — 51.06 79.0% — — 14.61 94.0% — —
Opt. 97.96 59.7% — 5,194 52.33 78.4% — 4,583 15.77 93.5% — 4,636
SAO 98.02 59.6% 0.0% 1,110 52.67 78.3% 0.2% 1,046 16.21 93.3% 0.2% 645
Benc. 109.32 55.0% 7.8% 48 68.65 71.7% 8.6% 49 32.26 86.7% 7.3% 48

0.75 LB 43.70 82.0% — — 17.38 92.8% — — 2.95 98.8% — —
Opt. 44.58 81.6% — 4,509 18.71 92.3% — 3,716 3.58 98.5% — 4,231
SAO 45.32 81.3% 0.4% 468 19.16 92.1% 0.2% 645 3.88 98.4% 0.1% 470
Benc. 58.39 75.9% 7.0% 48 33.71 86.1% 6.7% 49 14.17 94.2% 4.4% 49

1 LB 0.00 100.0% — — 0.00 100.0% — — 0.00 100.0% — —
Opt. 5.68 97.7% — 3,235 2.10 99.1% — 2,851 0.33 99.9% — 3,636
SAO 6.88 97.2% 0.5% 936 2.41 99.0% 0.1% 787 0.43 99.8% 0.0% 543
Benc. 8.65 96.4% 1.3% 49 4.58 98.1% 1.0% 49 1.60 99.3% 0.5% 49

Notes. In this table, Dep. refers to the expected deprivation costs; Gap shows the optimality gap; FL indicates the funding level; T shows the
computational time, in seconds; LB is lower bound; Opt. refers to optimal policy; and Benc. refers to the benchmark policy.
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fulfill nearly all the transportation missions). Further-
more, we observed that when m increases fewer vehi-
cles are required to minimize the total deprivation
cost, in all policies.

5. Model Extensions

We extend our model in four directions; We analyze
the impact of the flexibility on budget savings, as well
as the impact of procurement lead time on the
expected deprivation costs and fleet utilization. Then,
in Appendices D and E, we demonstrate how to
extend the model to a low- and high-cost status vehi-
cle, and to the case of stochastic demand.

5.1. Impact of Flexibility on Budget Savings
In previous sections, we assume that budget can be
fully saved for future periods. This may not be always
possible (e.g., for earmarked budgets that have to be
used within a given period). We extend our model to
allow for partial savings by introducing a new param-
eter 0 ≤ q ≤ 1 that indicates the flexibility of savings;
a value of q = 1 corresponds to the model that we
have studied thus far in which saving is fully possi-
ble, while a value of q = 0 refers to a situation in
which the budget has to be spent entirely in the same
period in which the funding is received. We can
incorporate this new parameter by updating the state
Equation (9) to
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Figure 4 Impact of Demand and Budget Variation on Expected Deprivation Costs and Fleet Utilization [Color figure can be viewed at wileyonlinelib
rary.com]
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Figure 5 Impact of the Rate of Vehicle Dismissal on Expected Deprivation Cost and Fleet Utilization [Color figure can be viewed at wileyonlinelib
rary.com]
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SBtþ1 ¼ minfqSt þ rðxt � LðxtÞÞ þ Ktþ1; SB
maxg: ð23Þ

Because the SAO heuristic has been designed for
full savings flexibility, we numerically determined
the optimal policy for analyzing the impact of param-
eter q on the results and show the results for the data
of Sudan in Figure 10. We obtain similar results for
the data of Syria. Figure 10a and b indicate that the
possibility of budget savings can significantly reduce
the expected deprivation costs, regardless of the bud-
get variation and differences in mission criticality.
The importance of saving seems to be particularly
critical when the budget variation is high.
The opportunity for budget savings between peri-

ods seems to neutralize the negative effect of budget
uncertainty to some degree. This result confirms that
a non-earmarked budget, which can also be used for
later periods, has more value than earmarked

budgets. Interestingly, we also observe that the saving
option has a positive impact on fleet utilization (Fig-
ure 10c and d). This result is similar to that of Besiou
et al. (2014) that shows a negative impact of an ear-
marked budget on the performance of humanitarian
operations.

5.2. Impact of Procurement Lead Time
Besiou et al. (2014) compare vehicle procurement
models (i.e., centralized, hybrid and decentralized) by
analyzing the procurement costs (e.g., vehicle pur-
chase prices from global versus local markets, lead
time costs). They highlight that vehicle procurement
costs in a decentralized model (where each office pur-
chases vehicles from the domestic market) are higher
than in a centralized model (in which the headquar-
ters purchases vehicles directly from the manufac-
turer). Their results indicate that for development
programs a decentralized model provides a higher
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Figure 6 Impact of the Operating Cost and Purchasing Price on Fleet Utilization [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 7 Impact of the Differences in Mission Criticality on Expected Deprivation Costs and Fleet Utilization [Color figure can be viewed at wileyon
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service level—even in the presence of constraints
imposed by earmarking of the budget—driven by the
shorter procurement lead time. In their study, service
level is defined as the ratio of available vehicles to the
total number of required vehicles. We looked at the
same question with a different objective function,
where service level is based on the expected depriva-
tion costs.
To analyze the impact of procurement lead time on

the expected deprivation costs, we define two new
models, one with a zero procurement lead time and
one with two periods of procurement lead time. The
case of one period of lead time corresponds to the
standard case described in section 2.
In the scenario with zero lead time, the purchased

vehicles in period t are readily available to use in the
same period. Thus, to allow for the immediate avail-
ability of ut vehicles, we replace the term xt with
xt þ ut. Likewise, due to unpredictable events (e.g.,
an accident in the field), all vehicles are equally

subject to sudden disposal. Therefore, we have to
adapt Equations (7), (9) and (10) with

at � xt þ ut; ð24Þ

SBtþ1 ¼ minfSt þ rðxt þ ut � Lðxt þ utÞÞ
þ Ktþ1; SB

maxg; ð25Þ

xtþ1 ¼ minfLðxt þ utÞ; xmaxg: ð26Þ
In the case of two periods of procurement lead time,

the vehicles purchased in period t � 1 arrive in per-
iod t + 1. Therefore, we have to add a new state vari-
able wt to address the state of these vehicles in period
t. In other words, wt represents the number of brand-
new vehicles that are purchased in period t � 1 but
are added to the fleet in period t + 1. Thus, we should
replace ut with wt and replace Equation (10) with

xtþ1 ¼ minfLðxtÞ þ wt; x
maxg; ð27Þ

and add the additional constraint

wtþ1 ¼ ut: ð28Þ
Models with lead times longer than two periods

can be defined equivalently through the introduction
of additional state variables but lead to significantly
higher computational complexity.
Similar to the trade-off of Besiou et al. (2014), our

trade-off is based on the assumption that shorter lead
times often come at additional procurement costs.
Thus, we compare the impact of higher vehicle pro-
curement costs in the case of zero lead time by consid-
ering price mark-ups of 0%, 50% and 100% on the
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base vehicle price. Furthermore, we vary the standard
deviation of the budget and the rate of vehicle dis-
posal. Table 2 reports the expected deprivation costs
for each scenario for Syria, based on the optimal poli-
cies. When we introduce a 2-period lead time, the
computation times increase significantly. Therefore,
we choose Syria that had the smallest fleet size.
The results indicate that a procurement lead time of

one period (which corresponds, in our setting, to
three months) has a negative impact on the expected
deprivation costs only if the manager is able to pro-
cure the same vehicle at the same price and with no
lead time, which is nearly impossible in the real
world. Although decreasing the procurement lead
time reduces per se the expected deprivation costs,
this effect is mitigated by the vehicle price markups,
which limit the financial resources for current and
future operations.
In addition, results indicate that the advantages of a

centralized fleet policy are particularly strong when
the degree of uncertainty is high. Finally, we find that
the centralized model is more affected by budget

variation; that is, the sensitivity with respect to the
budget variation is higher than the sensitivity with
respect to the vehicle disposal rate, whereas the
decentralized model seems to be more affected by the
vehicle disposal rate.

6. Conclusion

In this article, we develop a model for purchasing and
operating asset capacity in the setting of humanitarian
development programs. The objective of our model is
to minimize the expected human suffering due to
insufficient capacity of operating assets to deliver
humanitarian aid. We extend existing research by
considering mission criticality, budget uncertainty
and time-restricted budgets, and uncertainty in asset
replacement. We develop a heuristic based on a port-
folio approach, which achieves close-to-optimal
results, with an average optimality gap in our numeri-
cal experiments of 0.33%, outperforming existing poli-
cies by a wide margin. To develop our model and run
numerical experiments, we focus on vehicles
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representing long-life operating assets that are one of
the most critical assets to fulfill humanitarian trans-
portation missions. Based on a real dataset of vehicle
fleets in five countries from 2000 to 2015, we perform
numerical experiments and derive managerial
insights. We also show how to adapt our solution to
settings in which some of the model assumptions are
violated.
We find that budget variability increases the

expected deprivation costs and decreases fleet utiliza-
tion. Our results indicate that a way to mitigate the
negative effects of system uncertainty (such as budget
uncertainty) is to allow the offices to save a portion of
the budget between periods for future operations.
Our results also demonstrate that it is not always
preferable to operate all vehicles at full capacity in all
periods, which renders fleet management for humani-
tarian development programs different from fleet
management in the commercial sector. Finally, we
find that differences in mission criticality, even
though they decrease the expected deprivation costs,
lead to fewer transportation missions served.
This study also has some limitations. First, we do

not explicitly model the repair process of vehicles. It
is possible that the repair process of some vehicles
takes a considerable amount time and temporarily
affects the availability of those vehicles. Second, plan-
ning horizon might significantly impact the optimal
procurement policies. While this study develops a
policy for an infinite time horizon, it is interesting
(and valuable for certain HOs) to develop policies
when the planning horizon is finite. We believe that
this avenue of research could be further developed in
other directions as well. It can be developed by empir-
ical analysis and/or analytical work to better under-
stand deprivation costs in humanitarian development
settings. Furthermore, while we studied a single-type
asset procurement policy, further research could
explore multi-type asset settings. Finally, analyzing
settings in which an HO should trade-off between
operating assets and consumable relief items seems
worthwhile.
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Appendix A. Table of Symbols

Model variables and parameters
at The operating decision in period t
b Convexity factor of the deprivation cost function
cf Fixed cost of a vehicle per period
cL The average per period logistics cost of a

vehicle in case of 100% utilization rate
co Operating cost of a vehicle per period
Dm Average demand
Dt Demand in period t
c The probability of having to dismiss a vehicle in

one period
Jt ðxt ; SBt ; xt Þ The average deprivation cost under the optimal

policy, with state variables xt and SBt , and demand
phase xt

Kt Financial donations received at the beginning of
period t

L() Part of the fleet size in period t that can be used in
period t+1

l The average financial donations received per period
n Number of periods in one cycle
m Pareto parameter identifying the relative importance

of the transportation missions
xt Demand phase at period t
p Purchasing cost of a vehicle
r Residual value of a dismissed vehicle
Rt The deprivation cost incurred in period t
St Budget remaining as savings at the end of period t
SBmax Maximum amount of budget
SBt Available budget at the beginning of period t
SSL Social service level
r The standard deviation of financial budget
t Indicator of a period
ut The purchasing decision in period t
xmax Maximum number of vehicles
xt Available vehicles at the beginning of period t

Heuristic and benchmark variables and parameters
abt (ubt ) Benchmark operating (purchasing) policy in period t
aht (uht ) The heuristic policy for operating (purchasing) in

period t under a given value of h
�at Optimal number of vehicles to operate in period t

of the simplified problem
b0 Coefficient of the gain function V s

Dk
t k th possible realization of demand in period t

(continued)

Table 2 Expected Deprivation Costs for Scenarios with Different Lead Time, Total Purchasing Price, Budget Variation, and Dismissal Rate

Lead time Price markup

r c

9 0.5 9 1 9 1.5 9 0.5 9 1 9 1.5

2 — 3.433 3.746 4.160 3.579 3.746 3.800
1 — 3.352 3.579 4.033 3.507 3.579 3.654
0 0% 3.213 3.487 3.884 3.445 3.487 3.491
0 50% 6.540 6.914 7.351 5.102 6.914 8.675
0 100% 10.779 11.296 11.625 7.045 11.296 15.152
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K Number of demand realizations in the model with
stochastic demand

�t (�kt ) Error term of the demand distribution in period
t (k th realization)

Ŝ Upper threshold for savings
h Heuristic parameter
�ut Optimal purchasing decision in period t of the

simplified problem
V a
t ðiÞ Social gain from operating i vehicles in period t

V sðsjhÞ Estimated social gain from a saving s under the
heuristic parameter h

V u
t ði ; xt Þ Estimated social gain from purchasing i vehicles

in period t, when the fleet size is xt

Appendix B. Optimization of the
Deterministic Model
The deterministic problem of subsection 3.2 can be
written as follows:

min
1

n

Xn
t¼1

Rtð�atÞ; ðB1Þ

subject to

�at � xt; ðB2Þ

St ¼ SBt � cfxt � co�at � p�ut; 1� t� n ðB3Þ

SBtþ1 ¼ minfSt þ rcxt þ l; SBmaxg; 1� t� n ðB4Þ

xtþ1 ¼ minfð1� cÞxt þ �ut; x
maxg; 1� t� n ðB5Þ

ðx1; SB1Þ ¼ ðxnþ1; SBnþ1Þ; ðB6Þ

�at; �ut � 0; 1� t� n ðB7Þ

where n was defined as the number of seasons and
the minimization is taken over the controls �ut and �at.
For a simple case of constant demand, Proposition

3 expresses the optimal number of vehicles to operate,
�at, and the optimal number of vehicles to purchase, �ut,
and describes the system in steady state.

PROPOSITION 3. For a constant demand,

• the optimal number of operating vehicles is equal to
the fleet size �at ¼ xt.

• the optimal purchasing decision is given by

ut ¼
SBt � cfxt � coat

p
: ðB8Þ

• the steady state fleet size, �x, is given by

�x ¼ min Dm;
l
cL

� �
; ðB9Þ

where, in the steady state, the number of operating and
purchasing vehicles are �at ¼ �x and �ut ¼ c�x.

Appendix C. Deriving Vs
tðsjhÞ

To design a proper function that estimates the social
gain from a certain amount of savings, we note that
according to Equation (9), budgets larger than SBmax

will be lost. Expression rcxt þ l ¼ Eðrðxt
� LðxtÞÞ þ Ktþ1Þ is the expected budget to be received
at the end of period t. Therefore, we set the social gain
of any value of savings greater than SBmax � rcxt � l
to zero in our estimation. To simplify, we define the
following variable:

Ŝ ¼ SBmax � rc
l
cL

� l; ðC1Þ

where l=cL comes from Proposition 3 and estimates
the average fleet size in each period. For any s\ Ŝ,
the behavior of VsðsjhÞ should resemble the behavior
of Jtðxt; SBtÞ in SBt, where Jt is the minimum depri-
vation cost from period t onward. The following
lemma presents an important characteristic of Jt.

LEMMA 1. The average deprivation cost is decreasing in
the budget, that is, Jtðxt; SBt; xtÞ is (non-strictly)
decreasing in SBt.

Since the objective in Equation (18) is to maximize
the social gain, which is the inverse of the objective in
the main model (minimization of the deprivation
costs), we need to propose a function Vs that is
increasing in s, so that it provides a similar behavior.
Moreover, since our value function is the sum of
exponential functions, we also use an exponential

function for Vs. We assume VsðsjhÞ ¼ �eb
0ðhŜ� sÞ þ b00,

where h is the heuristic parameter. b0 and b00 are func-
tions of h, where we use the following equations to
determine their values:

Vsð0jhÞ ¼ 0; ðC2Þ

VsðŜjhÞ ¼ ebDm : ðC3Þ

Equation (C2) implies that the expected social gain
from no saving is zero, while Equation (C3)
expresses that for any s � Ŝ, the expected social gain
is equal to the social gain from satisfying all the
demands in one period. Therefore, VsðsÞ can be
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written as in Equation (17), where b0 and b00 are cal-
culated by solving the following equations:

eb
0Ŝh � eb

0Ŝðh�1Þ ¼ ebDm ; ðC4Þ

b00 ¼ eb
0hŜ: ðC5Þ

Appendix D. Extension to a Status-
Based Costing Model
Let us assume that each vehicle is labeled either as
low-cost or high-cost; for example, one may separate
between two types of vehicles, new and old, where
old have higher cost of maintenance, lower salvage
values, and higher probability of disposal. While this
classification theoretically makes sense, in practice a
new vehicle being used in a conflict zone or in poor
geographical conditions might turn to a high-cost sta-
tus, while a well-maintained old vehicle keeps a low-
cost status. Accordingly, let xlt and xht refer to the num-
ber of low-cost (i.e., fairly fresh) and high-cost (i.e.,
fairly depreciated) vehicles at period t, respectively.
At the end of any period, a low-cost vehicle is dis-
posed with probability cl, becomes high-cost with
probability clh, or maintains its status as new vehicle
with probability 1 � cl � clh. A high-cost vehicle is
disposed with probability ch [ cl at the end of a
given period. Let clo, c

l
f and rl refer to the operating

cost, fixed cost, and residual value of a low-cost vehi-
cle, while cho , c

h
f and rh denote the same values for a

high-cost vehicle. We assume that cho � clo, c
h
f � clf and

rh � rl, which implies that a high-cost vehicles is cost-
lier to operate and to maintain and has lower residual
value than a low-cost vehicle.
With few modifications, the SAO heuristic can be

adjusted to the extended model. Function Va
t ðatÞ

remains unchanged. Function Vu
t ðut; xlt; xht Þ also

remains largely unchanged, except for LðxtÞ which is
replaced by the function Lðxlt; xht Þ, taking into account
the dismissal probabilities of both vehicle types. The
deterministic formulation of the model presented in
Appendix B should be adjusted to the new model.
For function Vs, Equation (17) remains unchanged,

except for Ŝ, where the term referring to the expected
revenue from selling dismissed vehicles has to be
updated. Moreover, the value of the key parameter cL
in the new setting is given by

cL¼
chðclfþcloÞþclhðchf þchoÞþchðclþclhÞp�chðclrl�clhrhÞ

chþclh
:

ðD1Þ
The derivation of cL is available from the authors on
request.

It is easy to show that the low-cost vehicles should
be used with priority over high-cost vehicles.

Appendix E. Extension to Stochastic
Demand
To demonstrate the flexibility of the SAO heuristic,
we show how to extend it to situations in which
demand is uncertain.
We assume that the demand in each period

includes a stochastic term �t that is identically dis-
tributed in periods of the same demand phase and
independent between periods, with the expected
value of zero (Eð�tÞ ¼ 0). Assume that �t has K > 0
realizations, �kt , each with known probability Pð�kt Þ
and

PK
k¼1 Pð�kt Þ ¼ 1.

We write the demand in period t under demand
scenario k as Dk

t ¼ EðDtÞ þ �kt . In each period, the
decision-maker first observes Dk

t , and then decides
upon the operating and purchasing level. Therefore,
we need to change Vu

t of Equation (16).
The simplified model for calculating �at in

Appendix B needs to be modified to consider stochas-
tic demand by changing the objective function to

min
1

n

Xn
t¼1

XK
k¼1

Rtð�atjDt ¼ Dk
t ÞPðDk

t Þ: ðE1Þ

Under stochastic demand it is not possible to com-
pute the optimal solution and consequently, we can-
not compare the results of the SAO heuristic with the
optimal performance. Nevertheless, we analyze the
performance of the adapted SAO heuristic for differ-
ent levels of uncertainty.
We calculate the average deprivation costs for the

heuristic policy. We modified the second argument
of Equation (14) to adapt the benchmark policy to
the assumption of stochastic demand. We chose
Syria and Sudan between 2000 to 2005, so that we
can compare the results with those of the default
model presented in Table 1. We set m = 0.75 and
change the funding level from 50% to 100%. We

Table E1 Comparison of Expected Deprivation Costs of the SAO Policy
under Stochastic Demand and Different Funding Levels
(m = 0.75)

Country CV
Funding

level = 0.50
Funding

level = 0.75
Funding

level = 1.00

Sudan 0.0 17.25 22.99 1.76
0.1 18.62 24.34 2.11
0.2 24.38 30.66 3.89
0.3 36.51 44.27 10.36

Syria 0.0 16.21 14.17 1.60
0.1 17.56 15.02 2.08
0.2 22.94 18.88 3.79
0.3 34.28 27.30 10.06
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assume that demand follows a Normal distribution
in each period and change the coefficient of variation
(CV) from 0 to 0.3, where a CV = 0 refers to the
default model (Table 1). Table E1 reports the depri-
vation costs of the SAO heuristic and indicates that
the deprivation costs are increasing in the demand
variability.

Notes
1World Vision International. https://www.worldvision.
org/wp-content/uploads/F_630269_16_WorldVision_FS.
pdf (accessed date February 9, 2017).
2For instance, during 2002–2006, the United Nations High
Commissioner for Refugees (UNHCR) spent an average of
only USD 9.6 million a year on the purchase of new vehi-
cles. In 2011, the UNHCR’s annual operating cost (i.e.,
procurement, operations, and disposal) of its 6500 light
vehicles was estimated to be USD 130 million (Arsenault
et al. 2018).
3While we choose to consider the average costs as the
objective (and show that the limit of Equation (6) exists),
an alternative is to consider a discounted sum as the
objective function. We refer an interested reader to Sev-
erens and Milne (2004).
4Throughout this project, we held discussions with execu-
tives of the International Committee of the Red Cross
(ICRC), Mercy Corps, American Red Cross, Catholic Relief
Services and several freelance consultants specializing in
the humanitarian sector.
5The source organization of our data is the same as Efte-
khar and Van Wassenhove (2016). However, the sample
countries (or locations) are different.
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