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T his article aims to identify optimal vehicle procurement policies for organizations engaged in humanitarian develop-
ment programs and to derive general insights on the characteristics of these policies. Toward that end, we follow an

inductive approach. First, we study the operations of the International Committee of the Red Cross (ICRC) in three repre-
sentative countries: Sudan, Afghanistan, and Ethiopia. Using a linear programming (LP) model primed with field data
provided by the ICRC, we calculate the optimal vehicle fleet size and compare it with the policies actually implemented.
Second, drawing from results of the LP model, we develop a stylized quadratic control model and use it to characterize
the general structure of the optimal policy under different demand scenarios and operational constraints. After demon-
strating that the results of the control model are consistent with those of the LP model in the specific context analyzed,
we discuss the optimal policies and the applicability of the former as a practical tool for strategic asset planning.
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1. Introduction

International humanitarian organizations (HOs) oper-
ate worldwide to run relief operations and develop-
ment programs. Relief operations address emergency
situations created by such disasters as famine, earth-
quakes, and floods, all of which require immediate
response on a short-term basis. In contrast, develop-
ment programs aim to provide long-term support and
to improve living standards in poor countries andmay
run for years after a disaster (VanWassenhove 2006).
Transportation plays a pivotal role in both types of

programs. It is a vital element of the demand fulfill-
ment process (Van Wassenhove 2006) and, after per-
sonnel, the second-greatest HO operating expense
(Disparte 2007). Much of the transportation-related
costs are associated with fleet management—that is,
the acquisition, maintenance, use, and disposal of
vehicles. It is not surprising that international HOs

have begun to pay more attention to this issue, given
the cost savings and performance improvements
expected from optimized fleet management pro-
cesses.
Decisions on fleet size are especially challenging for

HOs because of the unusual environments in which
they must operate (Pedraza Martinez et al. 2010).
Security problems, poor infrastructure, and lack of
reliable routes make vehicle usage patterns in HO
contexts much different from those in commercial
supply chains (Kovacs and Spens 2007, Tomasini and
Van Wassenhove 2009). Security problems in conflict
zones (Van Wassenhove 2006) affect the allocation of
vehicles to missions. In some areas, humanitarian
operators may be in danger if a vehicle breaks
down; hence, only new vehicles can be used for field
trips, while older vehicles must be used for adminis-
trative purposes in safer zones (Stapleton et al.
2008). Humanitarian organizations also face long
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procurement lead times. Operating in areas with poor
infrastructure, they need specially equipped vehicles
that must be ordered directly from manufacturers.
Maintenance, too, is a challenge: in developing coun-
tries, auto dealers may not be trustworthy, outsourc-
ing options are limited, and obtaining spare parts can
be difficult. Finally, poor coordination and the lack of
an adequate information technology (IT) infrastruc-
ture create extra costs and may lower performance
even further (Pedraza Martinez et al. 2011).
The peculiar decision-making process of HOs cre-

ates additional challenges. Most HOs have a three-
level structure: headquarters (HQ), which is usually
established in a developed country, is responsible for
strategic planning and budgeting decisions; national
delegations coordinate activities within a country and
are usually established in that country’s capital city;
and subdelegations are operational units, spread over
many locations in the country, that run projects in the
field. Although vehicles are deployed at the local
level, fleet planning decisions are made by HQ at the
aggregate level. In a centralized procurement proce-
dure, such as the one used by the International Com-
mittee of the Red Cross (ICRC), subdelegations send
requests to the national delegation, which in turn uses
subdelegation data to derive an estimate of total
demand that is submitted to HQ. Headquarters then
uses these national estimates to decide how many
vehicles should be purchased and shipped to delega-
tions worldwide, often without having complete and
accurate information upon which to make decisions.
Given these idiosyncratic characteristics, standard

fleet management practices derived in commercial
supply chains are unlikely to be easily applicable to
HOs. Furthermore, an HO’s unusual procurement
process creates certain problems for decision makers.
At the HQ level, central planners are responsible for
making fleet size decisions on behalf of national dele-
gations (and, by extension, their subdelegations). Yet,
HQ seldom has the detailed demand and cost data
needed to optimize decisions. Hence, fleet sizes are
often established qualitatively by using simple, ad hoc
heuristics. Central planners would therefore benefit
from simple and parsimonious tools to guide vehicle
procurement and allocation decisions—tools that use
stylized aggregate demand information to infer the
general structure of optimal policies. Of course, the
validity of policies shaped by these tools should be
compared with the detailed policies computable from
detailed models when data are available.
Despite the relevance of fleet management from

both an academic and a managerial perspective, the
literature on aggregate-level fleet sizing in develop-
ment programs is sparse. This article aims to fill that
void. We seek to identify optimal vehicle procure-

ment policies for HOs engaged in development pro-
grams and also to derive general insights on the
characteristics of these policies under various opera-
tional conditions. The focus is on development pro-
grams because—despite representing a significant
part of an HO’s activities—they have received less
attention than relief operations. We take an inductive
approach in two steps. In the first step, we study
ICRC operations in three representative countries
(Sudan, Afghanistan, and Ethiopia) for which detailed
data are available; given these data, we empirically
estimate vehicle cost and capacity parameters. We
next apply a linear programming (LP) model to calcu-
late the optimal fleet size in each of these countries
and then compare this size with the ICRC’s imple-
mented policy. In the second step, we draw upon the
results of this LP model to develop a stylized qua-
dratic control (QC) model that, while preserving the
properties of the LP solution, is more parsimonious
and has data requirements compatible with the data
typically available at HO headquarters. We use this
QC model to characterize the optimal policy’s
structure under different demand scenarios, and we
discuss its applicability to strategic asset planning.
Our analysis yields several interesting insights. The

LP model suggests that, in sharp contrast to the poli-
cies adopted by most HOs, the optimal fleet size
remains relatively stable (under the specific demand
scenario observed in the three sample countries) even
when demand fluctuates. The QC model increases
our understanding of the optimal policy’s general
structure and illustrates how that structure varies
with demand characteristics, desired service levels,
and the minimum and maximum thresholds for
vehicle replacement.
The rest of the article is organized as follows. In sec-

tion 2, we position our research with respect to the
extant literature. Section 3 describes our research
setting. Section 4 describes the LP model and its appli-
cation to ICRC operations in Sudan, Ethiopia, and
Afghanistan; section 5 presents the QC model and
discusses the general properties of optimal policies.
Finally, section 6 concludes the article, points out its
limitations, and indicates some avenues for future
research.

2. Literature Review

The humanitarian operations literature has studied
fleet management in the context of both relief opera-
tions and development programs. The focus of this
literature varies to reflect the different transportation
requirements of the two undertakings (Pedraza Marti-
nez et al. 2011): maximizing responsiveness and
demand coverage for relief operations; and reducing
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costs and increasing fleet utilization for development
programs.
Scholars studying fleet management for relief oper-

ations have dealt mostly with problems of victim
evacuation and aid distribution, usually with the
objective of minimizing response time. The victim
evacuation literature has examined various trade-offs
in a number of contexts, including optimal routing
(Han et al. 2006), shelter locations (Sherali et al. 2006),
scheduling helicopters (Barbarosoglu et al. 2002), and
pre-positioning assets (Salmeron and Apte 2010).
Research on aid distribution has focused on optimiz-
ing the delivery of aid to beneficiaries by minimizing
travel time or maximizing demand coverage. A
variety of contexts have been studied, including the
dispatching of commodities (Yi and Ozdamar 2007),
routing vehicles (Campbell et al. 2008), planning dis-
tribution (De Angelis et al. 2007), and optimizing
facility location (Jia et al. 2007).
Fleet management has received comparatively less

attention in development programs than in relief
operations (Altay and Green 2006), even though the
former make up a substantial part of any HO’s opera-
tions. In development programs, scholars have mostly
studied other themes: earmarked budgets (Besiou
et al. 2012), vehicle reliability (McCoy 2013), or incen-
tive mechanisms to guarantee data sharing between
delegations and HQ (Pedraza Martinez et al. 2010).
Of the two primary goals of fleet management cited
by Pedraza Martinez et al. (2011), optimizing vehicle
routing and optimizing fleet sizing, only the first one
has been adequately studied, mostly using the same
approaches adopted by the relief operations literature
(Ingolfsson et al. 2008).
The few studies that deal with vehicle procurement

and replacement in development programs have
taken a “micro-level” perspective. That is, they have
examined the replacement of each vehicle on an indi-
vidual basis (Pedraza Martinez and Van Wassenhove
2013). Studies at the micro-level are useful to local
managers in subdelegations, who handle a limited
number of vehicles. However, such studies are less
applicable at the HQ level, where central planners can
decide on fleet sizes only at the aggregate level and
are constrained by the lack of detailed data or by
budget limitations. Given these limitations, central
planners need macro-level models that can help them
determine the optimal fleet size at the aggregate level
over time (Vemuganti et al. 1989). Yet, we are not
aware of any paper that addresses this problem for
development programs.
As the literature on commercial supply chains has

treated fleet sizing too, it is useful to assess whether
insights from these studies can be applied to human-
itarian development programs. Although this litera-
ture has predominantly taken a deterministic

approach (see Vemuganti et al. 1989), some scholars
have incorporated different sources of uncertainty to
study a variety of problems such as repositioning
empty vehicles in a network (Song and Earl 2008),
determining the optimal number of outside carriers
(Klincewicz et al. 1990), allocating trucks in a hub-
and-spoke network (Du and Hall 1997), or determin-
ing optimal fleet size (List et al. 2003). These models
have the clear merit of treating uncertainty. However,
they are not easily applicable to humanitarian devel-
opment programs primarily because they require
detailed data on the variance of the demand process,
which are nearly impossible to obtain in the humani-
tarian sector. Also, in some cases, these models
consider solutions that are not easily implementable
in the humanitarian sector (Klincewicz et al. 1990) or
analyze operational contexts and sources of uncer-
tainty that are not a primary concern for development
programs (Du and Hall 1997, Song and Earl 2008).
More importantly, they do not easily allow for the
incorporation of certain identifying characteristics of
humanitarian operations, such as age-dependent
vehicle usage patterns and procurement and reselling
constraints (List et al. 2003).
In light of these limitations, our article aims to con-

tribute to the literature on humanitarian logistics by
taking a deterministic approach and a macro-level
perspective to the analysis of fleet sizing problems in
development programs. We develop a LP model and
a stylized QC model, both of which minimize total
costs over time (subject to the typical operational
constraints of a large HO). Our deterministic and
macro-level approach is useful to derive general
insights on a problem that is relatively novel in the
humanitarian operations literature and to pave the
way for the development of more sophisticated (but
more data-intensive) models. It also enables our con-
sideration of such constraints as meeting demand and
not exceeding monthly budgets, constraints that do
not apply at the individual vehicle level yet are
important at the fleet level. In that respect, this article
complements and extends the work of Pedraza Marti-
nez and Van Wassenhove (2013) on individual vehicle
replacement by determining how many vehicles are
needed at the aggregate level over a given period of
time, under a particular demand curve, and subject to
certain budget constraints. Our work differs from
most research on commercial fleet management in
that it accounts for two identifying characteristics of
humanitarian operations: the fact that a vehicle’s
usage decreases with age and the existence of replace-
ment thresholds for individual vehicles.
In summary, our article contributes to the literature

on humanitarian fleet management by (a) considering
constraints that are specific to humanitarian opera-
tions at the subdelegation level, (b) incorporating
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constraints (e.g., budget limitations) related to vehicle
procurement, and (c) constructing a model that pre-
serves the dynamics imposed by these constraints
and thereby helps us describe how those dynamics
interact with demand parameters to determine which
fleet management decisions are optimal at the aggre-
gate level. Note also that, unlike many studies in this
area, we posit a model that describes the general
structure of optimal policies—in other words, irre-
spective of the empirical context in which they are
implemented.

3. Research Setting

In order to ground the study, we analyzed the opera-
tions of the ICRC between 2000 and 2007 in Ethiopia,
Sudan, and Afghanistan. We received two data sets
from ICRC as part of the collaboration between the
INSEAD Humanitarian Research Group and the
ICRC Fleet Management Unit. This information was
complemented by several interviews with representa-
tives of the ICRC and other HOs that attended the
2011 Annual Fleet Forum in Geneva. Over the period
of our analysis, ICRC had established 29 subdelega-
tions in the countries we selected. The ICRC sug-
gested that the three countries make for an ideal
research field because each is highly representative of
their operations and of a typical operating environ-
ment with regard to climate, geography, infrastruc-
ture, and mission. These are also the countries in
which the ICRC had its largest fleets (on average, 265
vehicles in Sudan, 187 in Afghanistan, and 139 in
Ethiopia). All subdelegations were equipped with the
most frequently used vehicle for humanitarian
missions, the 4 9 4 Toyota Land Cruiser.
Similar to what we observed at other HOs, the

ICRC’s vehicle procurement process is centralized.
Subdelegations periodically provide estimates of their
demand for transportation services to their national
delegation, which aggregates the information and
submits requests to HQ. Headquarters then uses these
estimates in determining how many vehicles to
purchase from the manufacturer and how they
should be allocated to subdelegations.
Like other HOs, the ICRC is tied (with this vehicle’s

manufacturer) to a commercial agreement that dic-
tates specific constraints related to procurement. For
example, the ICRC purchases vehicles at below-mar-
ket prices, but it is not allowed to resell any vehicle
before it is 3 years old. The manufacturer may also
impose minimum and maximum purchasing quanti-
ties. Combined with budget limitations, such require-
ments further constrain an HO’s procurement process.
The most important characteristics of the ICRC

fleets in our three sample countries are described in
Table 1, which summarizes the two data sets we Ta
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received. The first, an unbalanced panel data set with
monthly observations, covers all the vehicles used by
the ICRC in Sudan, Afghanistan, and Ethiopia for the
period 2000–2007. For each vehicle and time period
(month), this data set reports the country of operation,
the distance traveled, the vehicle’s age, and the sub-
delegation that used the vehicle. This data set is an
extension of the one used in Pedraza Martinez and
Van Wassenhove (2013); it differs in that (a) it covers
a longer time period and (b) it has been cleared of
potential outliers with unrealistic odometer readings.
The second data set that we received is a cross-
sectional one covering the ICRC fleets for the same
countries and time period. This data set includes
information on the country of operation, vehicle age
while in use and when it was sold, the subdelegation
that used the vehicle, and its residual value.
Because some of the parameters we estimate for the

LP model are time independent, we converted the
first data set (which had a panel data structure) into a
cross-sectional format by computing the averages
(over time) of all the time-dependent variables. We
then merged the two data sets, and we used the new,
combined database to estimate the parameters of the
LP model.

4. Linear Programming Model for
Vehicle Fleet Sizing

4.1. Model Structure
We propose a LP model that optimizes vehicle fleet
sizing at the national delegation level, where detailed
data on vehicles and estimated demand are typically
available. In the interest of space, we only discuss the
general logic of the model, the methods adopted to
estimate its input parameters, as well as the results of
its application to the ICRC fleets in Afghanistan,
Sudan, and Ethiopia (further details on the model
formulation are available from the authors).
The decision maker’s objective is to identify the

number of vehicles of age a in period t that minimizes
total fleet management cost over the decision horizon,
subject to some operational constraints. Vehicle allo-
cation decisions are revised monthly. In any period t
(i.e., every month), the optimal fleet size is deter-
mined by choosing the number of new vehicles to be
purchased and the number of vehicles of age a that
should be sold. In accordance with studies that have
addressed the same problem for commercial fleets
(Vemuganti et al. 1989), we consider three major
costs: purchasing cost, maintenance costs, and the
residual value of vehicles at the end of their opera-
tional lives (this is an opportunity cost because HOs
can recover some of that value by reselling the
vehicles locally at a price ra). We discount all cost
functions using a 2% annual interest rate and express

all budgets and cash flows in real (not nominal) terms.
Since all our cost variables are country dependent, the
model is effectively solved at the national delegation
level.
The model includes the ICRC’s actual operational

constraints: a sales constraint accounting for the pro-
hibition against ICRC reselling a vehicle in the first
36 months of its life; a service level constraint guaran-
teeing that the fleet planned usage (i.e., the maximum
distance that vehicles in the fleet can travel in a given
amount of time and in a given operating environ-
ment) is sufficient to meet estimated demand in each
period; and a budget constraint Bt capturing the
limited budgets of ICRC delegations for purchasing
new vehicles and maintaining their fleets.

4.2. Parameter Estimation
4.2.1. Fleet Planned Usage. Unlike most papers

on disaster management, which use synthetic data,
we use field data to estimate the model parameters
empirically. The proprietary data set obtained from
the ICRC was used to calculate two variables directly:
the planned usage of individual vehicles, da, and the
total transportation demand during each period, Dt.
The planned usage of individual vehicles was then
used to compute total fleet planned usage and to esti-
mate maintenance costs and the residual value of
individual vehicles.
In the humanitarian sector a vehicle’s planned

usage, da (i.e., the maximum distance a vehicle can
travel in a given period), decreases with a vehicle’s
age. For safety reasons, vehicles are not assigned to
risky field missions after a specified age �a (typically
24 months); vehicles older than �a are used only for
safer and shorter trips in urban areas (Stapleton et al.
2008). This policy of switching the use (mission type)
of vehicles after a critical age threshold implies that
the parameter da is best approximated by a two-step
function:

da ¼ b�0 þ b�1 a if a��a,
bþ0 þ bþ1 a if a[�a:

�
ð1Þ

Although ICRC recommends switching mission
types after 24 months, in practice the critical age
threshold �a depends on the country of operations. In
order to estimate the coefficients b�1 and bþ1 and then
determine the age threshold �a at which switching
takes place, we used two different approaches: a
cross-sectional analysis and a panel data analysis.
In the former approach we estimated Equation (1)

for each country separately using the cross-sectional
database. The models were estimated for age thresh-
olds �a below and above the ICRC policy of �a ¼ 24.
For each run, we used a Chow test to check for equal-
ity between the coefficients b�1 and bþ1 , and we
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retained the value of �a with the highest significance
level in the test.
Results are presented in Table 2. In the age interval

½0;�a�, planned usage does not depend on vehicle age;
but after the age threshold �a, planned usage decreases
sharply with age. The estimated thresholds were
18 months for Afghanistan and 23 months for Sudan
and Ethiopia.
We next used these results to calculate vehicle

planned usage as follows. In the interval ð�a;A�, we
calculated usage via da ¼ b̂0 þ b̂þ1 a (where b̂0 and b̂þ1
are, respectively, the estimated values of b0 and bþ1 ).
In the interval ½0;�a�, where da is independent of a, we
followed the approach of Lapre et al. (2000) and cal-
culated da as the maximum monthly distance traveled
in the interval ½0;�a�. These results were validated by
reestimating the relationship between planned usage
and vehicle age using a panel data approach with
subdelegation fixed effects. The estimates of �a in the
panel data analysis were consistent with those from
the cross-sectional approach.

4.2.2. Demand. In development programs, the
demand for transportation services is relatively stable
and predictable (Pedraza Martinez et al. 2010). Most
of the demand fluctuations in these programs occur
with significantly longer cycles than the time interval
in our analysis and are not difficult to predict because
they are due to such assignable causes as the HO
increasing or decreasing its level of activity in a coun-
try. Furthermore, unpredictable demand variation in
development programs is inherently lower than in
relief operations because development programs are
long-term and repeated endeavors for which fleet
managers can generate relatively accurate forecasts.
And even if some inherent variability is observed at
the daily or weekly level, its magnitude is greatly
attenuated at the monthly level because of pooling
effects and because most journeys are non-critical and
can easily be backlogged.
Subdelegations do not record demand for transpor-

tation services in each period, so we used the total dis-
tance traveled by the whole fleet over a given time
period as a reasonable proxy for aggregated demand.

Since using this proxy may create endogeneity prob-
lems due to the correlation between fleet size and
number of journeys completed, we conducted addi-
tional tests using censored data models and 2SLS
estimation methods to assess the potential error
induced by our approach. The results of the tests
(available from the authors) provided no evidence of
endogeneity.

4.2.3. Cost Functions and Budget. Purchasing
cost data were obtained through interviews with the
ICRC fleet manager. Over the period of our analysis,
Toyota charged a fixed and constant price of CHF
28,000 for each vehicle purchased by ICRC (inclusive
of vehicle shipment costs). Maintenance costs (which
include both preventive maintenance costs and mis-
cellaneous costs) and residual value were calculated
using a method developed by Pedraza Martinez and
Van Wassenhove (2013). Preventive maintenance
costs are a function of the cost and the number of
components that need to be replaced every period.
The replacement schedule of components depends, in
turn, on a vehicle’s odometer reading (except for bat-
teries, whose replacement schedule is based on age).
Miscellaneous costs and residual value also depend
on a vehicle’s odometer reading. Since Pedraza Marti-
nez and Van Wassenhove (2013) estimate those costs
empirically in the same research setting as the one of
this article, we could use their approach and estimate
all costs using coefficients from their study. For fur-
ther details on the estimation procedure we refer the
interested reader to their article.
The ICRC did not disclose data on its actual bud-

gets, so we took an alternative approach to estimating
the parameter Bt. Following advices from the manag-
ers we interviewed, we used the actual fleet cost as a
conservative estimate of Bt and computed nominal
monthly budgets simply by dividing the total fleet
cost for a given time period by the number of months
in that period.

4.3. Results of the LP Model
The LP model was run for Afghanistan, Sudan, and
Ethiopia separately. With this model, we seek to

Table 2 Individual Vehicle’s Planned Usage: Cross-sectional Analysis

Chow test results Age interval regressions

Country of operations Knot Fcrit. F Null hy. b̂�0 , b̂
þ
0 b̂�1 , b̂

þ
1 p-value t Adj. R2 Planned usage (da )

Afghanistan a ≤ 18 3.11 17.37 Rej. 1676.98 2.26 0.86 0.18 �0.10 2124.77
a > 18 �11.57 0.00 �12.56 0.69 1676.98 � 11.57a

Ethiopia a ≤ 23 3.10 4.77 Rej. — 2.44 0.86 0.18 �0.06 3281.15
a > 23 3180.19 �24.76 0.00 �27.39 0.91 3180.19 � 24.76a

Sudan a ≤ 23 3.20 21.34 Rej. — �17.14 0.23 �1.26 0.03 2509.65
a > 23 2175.62 �23.51 0.00 �5.89 0.52 2175.62 � 23.51a
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obtain a “reference” optimal policy that could be used
to generate insights for the more general control
model; therefore, it was run for the entire time span
over which we had data. The results are plotted in
Figures 1 and 2, which compare (respectively) opti-
mal with actual usage and optimal with actual fleet
size.
Figure 2 suggests that the policy recommended by

our LP model smooths out demand variations and
keeps fleet size fluctuations to a minimum (i.e., it con-
firms that optimal fleet usage is less variable than
demand). A series of F-tests confirmed that optimal
fleet usage exhibits significantly lower variation than
does demand. The null hypothesis of equality of vari-
ances was rejected for all three countries in our analy-
sis with F = 2.10 (p < 0.01), F = 1.56 (p < 0.05) and
F = 1.49 (p < 0.05) for, respectively, Afghanistan,
Sudan, and Ethiopia.
To obtain further insights into the differences

between the optimal policy and the actual policy, we
compared the cost of the optimal policy identified by
the LP model to the cost of the policy actually imple-
mented for all three countries. Over the period of our
analysis, using the optimal policy would have
reduced costs by 7.9% in Afghanistan (from CHF
5.3 million to CHF 4.9 million), by 19.2% in Sudan
(from CHF 10.3 million to CHF 8.3 million), and by
26.2% in Ethiopia (from CHF 3.8 million to CHF
2.8 million)—a cumulative cost savings exceeding
CHF 3.7 million.

5. Quadratic Control Model for
Determining Optimal Policies under
General Demand Scenarios

5.1. Model Rationale
The LP model generates a detailed vehicle procure-
ment policy and yields interesting insights. However,
these results are valid only for the particular realiza-
tion of the demand function observed in our three
sample countries from 2000 to 2007. In order to derive
optimal policies for different demand scenarios, deci-
sion makers at the HQ level would want to rerun the
LP model for those scenarios; however this is both
time consuming and data intensive—and thus less
useful in the humanitarian context, where data are
not readily available.
We offer an alternative and more practical

approach to guiding HQ decisions: a stylized model
that draws on the results of the LP to describe the
structure of optimal policies not only in the specific
case considered but also under different and more
general demand scenarios. Because the governance as
well as the procurement and maintenance policies of
any subdelegation are imposed centrally by ICRC
headquarters, they all face constraints that contribute
to usage being less variable than demand. This fact
allows us to generalize the results derived from our
LP model and to use them to construct the QC model.
This model can be used to analyze the optimal pol-
icy’s general properties, to conduct validity checks on
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the heuristics currently used by HOs, and to run sen-
sitivity analyses that elucidate the impact of changes
in input parameters on the optimal policy. Our model
establishes links among budget dynamics, planned
usage dynamics, and the operational context—
relations that have not been examined in the literature.
We make two assumptions to develop the QC

model. The first (based on results of the LP model) is
that high fleet size variability is not optimal. We there-
fore construct a QC model that accounts—through the
term u2ðtÞ, as explained in what follows—for such
variability by penalizing the rate at which fleet size
increases or decreases over time. The second assump-
tion is that efficient operations ought to match supply
with demand to a level specified by management. Our
model allows the decision maker to choose this level
(through the parameter q). Thus, the model penalizes
time-averaged overstocking and understocking costs
as well as procurement decisions that increase fleet
size variability over the planning horizon.
This model is constructed to optimize fleet size at

an aggregate level and works with data that are only
approximate; for these reasons, we use the average
number of vehicles (instead of the planned usage) to
represent demand. Observe that the average demand
per period in number of vehicles can be easily deter-
mined by dividing the total demand (in kilometers)
by the average distance that a vehicle is driven per
period. The model’s inputs are demand requirements
and operational constraints; its output is a fleet size
time trajectory that satisfies those conditions while
minimizing fleet size variation. In addition, the model
allows the decision maker to decide how much of a
penalty to impose for stocking costs and fleet size var-
iability. In section 5.2, we introduce the model. In sec-
tion 5.3, we use it to analyze the structure of optimal
policies for three general demand cases. In section 5.4,
we compare the optimal policy based on the QC
model for a specific realization of demand with its
counterpart based on the LP model.

5.2. Model Formulation
Equations (2)–(6) describe the objective function of
the QC model and its constraints. x(t) is a state vari-
able representing the number of vehicles available in
period t, and u(t) is the control variable accounting for
the number of vehicles either purchased or sold in
period t. Note that u(t) can be either positive (when
vehicles are purchased) or negative (when they are
sold). The rate at which fleet size changes is _xðtÞ and it
is the summation of the control variable u(t) and the
number of old vehicles (per period) that should be
replaced owing to safety or maintenance concerns.
This number is given by x(t)/s, where s is the average
time before a vehicle is replaced. We remark that the
need to replace vehicles from time to time is another

source of variability in fleet size. According to Pedra-
za Martinez and Van Wassenhove (2013), the individ-
ual replacement policy should be set as a function of a
vehicle’s odometer reading; hence, s depends on the
number of kilometers a vehicle is driven before it
needs to be replaced. We estimate this number as
optimal replacement odometer

average monthly usage
. For example, if vehi-

cles are optimally replaced at an odometer reading of
100,000 km and if vehicles average 2,000 km per
month, then s is 50 months. M is a constant that
reflects maximum purchasing and selling quantities,
whereas d represents the least proportion of demand
to be covered. Finally, D(t) is the demand in period t
(in number of vehicles).

Objective function:

min
uðtÞ

J ¼ 1

2

Z T

0

ðq½xðtÞ �DðtÞ�2 þ r½uðtÞ�2Þdt ð2Þ

subject to the following expressions.

State equation:

_xðtÞ ¼ uðtÞ � xðtÞ
s

:
ð3Þ

Demand fulfillment constraint:
xðtÞ� dDðtÞ: ð4Þ

Purchasing/selling constraint:
�M� uðtÞ�M:

ð5Þ

Boundary condition:
xð0Þ ¼ 0:

ð6Þ

The term r½uðtÞ�2 is used to penalize fleet size varia-
tion, and the term q½xðtÞ � DðtÞ�2 is used to penalize
the mismatch between fleet size and demand. Here, q
and r are, respectively, the penalty cost due to fleet
size–demand mismatches and the penalty cost due to
purchasing or selling vehicles. Thus, if the ratio q/r is
high, then the model forces fleet size to match
demand; but if q/r is low, the model focuses on mini-
mizing fleet size variation and allows for a greater
mismatch between fleet size and demand. The value
of q could be set by specifying a value for the cost of
the average mismatch between fleet size and demand
for a given time period. This parameter is a proxy for
customer service and can be estimated empirically
because it depends on the cost a subdelegation could
incur for wasting perishable food products or for not
being able to deliver drugs to beneficiaries due to an
insufficient fleet size. In order both to simplify nota-
tion and to limit solution complexity, we assume that
overstocking and understocking are equally expen-
sive. (Note that in relief operations understocking can
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be more costly: it may result in a mission being can-
celed and, ultimately, in lives being lost.) The parame-
ters s and d can also be used to account for differences
between programs (health programs may require
both shorter replacement intervals and higher service
levels than do food programs).
Several scenarios can be represented by altering the

parameters q and r, whose values can be set based on
past experience. Constraint (3) is the state equation
representing the fleet size variation in each period.
The term u(t) is the decision variable, which indicates
how many vehicles should be added to (or removed
from) the fleet; x(t)/s is the number of vehicles that
must be replaced in period t. Note that for a given
number of missions, x(t)/s is greater in countries that
are (geographically) larger because their vehicles
must cover more ground in a given period to accom-
plish the same missions. Note also that, since HOs
cannot purchase partial vehicles, u(t) is rounded to
the nearest integer when the model is used in practice.
Constraint (4) guarantees that, in any period, a por-
tion d of demand will be satisfied. The parameter d is
positive, and it can take values greater than 1 when
some vehicles are used as a safety stock. Constraint
(5) captures a limit that may be placed on the number
of vehicles bought or sold each period. As in the LP
case, it reflects annual order quotas imposed by vehi-
cle manufacturers as a condition of offering discounts.
The selling constraint reflects transaction costs, which
arise because it is not economical for an HO to resell
just a few used vehicles. To simplify notation, the
maximum selling and purchasing levels are assumed
to be equal. Finally, constraint (6) is the boundary
condition. Without loss of generality, we assume that
the initial number of vehicles is zero.

5.3. Analysis of Demand Scenarios
In this section, we use the QC model just developed
to study the structure of optimal policies under three
different demand scenarios: (i) a general demand
function that consists of an increasing (or decreasing)
term and of a term that varies around a constant; (ii) a
demand function that consists only of an increasing
(or decreasing) term; and (iii) a demand function that
consists only of a term that varies around a constant.
These functions reflect well the structure of the real
demand observed in the three countries that we ana-
lyze in this study. Between 2000 and 2007, for exam-
ple, demand in Sudan can be subdivided into three
distinct patterns: constant from t = 0 to t = 22 (i.e.,
from 2000 to 2002), linearly increasing from t = 23 to
t = 33 (2002–2003), and oscillating around a constant
mean from t = 34 to t = 84 (2003–2007).

5.3.1. General Demand Function. We consider
the general nonmonotonic demand function

DðtÞ ¼ atþ b sinðxtÞ; ð7Þ
which represents the most general case. The first
term in (7) represents the increasing (or decreasing)
trend; the second term represents the demand oscil-
lation. The parameter x is the frequency of the
demand oscillation, and b is its magnitude. For
development programs (unlike relief operations), we
can assume that b is small because typically the
demand for humanitarian services in these pro-
grams is strongly correlated with the size of the
population in the affected area, which is relatively
constant over time in the short to medium run. The
term at captures a common situation. The ICRC
often starts operating in a country with a few small
projects and then expands its operations over time;
demand then follows an upward trend and varies
with time. A symmetrical situation occurs (now
with a < 0) as the ICRC withdraws from a country.
Whereas relief operations encounter a lot of unpre-

dictable variability, the demand variability in devel-
opment programs is fairly cyclical. It can therefore be
accurately and conveniently approximated by a sinu-
soidal function, which reflects well the seasonality of
some demand drivers. For instance, organizations
running food programs typically face demand peaks
during or right after drought periods, which are
seasonal events. Likewise, the demand for health pro-
grams increases in tropical regions after floods, which
are also seasonal events. Our interviews with execu-
tive managers in large HOs (including the ICRC, the
World Food Program, andWorld Vision International)
confirmed that demand variation exists but that its
magnitude b is usually a small percentage of the total
demand. The model’s demand parameters can also be
used to accommodate differences among different
program types—for example, the demand for food
programs may oscillate more frequently but at a lower
amplitude than does the demand for health programs.
Our first proposition follows from solving the QC

model for the demand function (7). (All proofs are
available upon request).

PROPOSITION 1. For the demand function at + b sin(xt),
let x(t) and u(t) be the unconstrained solution of problem
(2) given by

xðtÞ ¼ aqts2

qs2 þ r
þ bq sinðxtÞ
qþ rð1=s2 þ x2Þ ; ð8Þ

uðtÞ ¼ qs2a
rþ qs2

þ qsat
rþ qs2

þ sbðax cosðxtÞ þ q sinðxtÞÞ
rþ s2ðrx2 þ qÞ :

ð9Þ

Then, in each period, the optimal solution will be as
given by one of the following cases:
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(a) If x(t) ≥ dD(t) and �M ≤ u(t) ≤ M (i.e., if neither
constraint (4) or (5) is binding), then the optimal
solution is u�ðtÞ ¼ uðtÞ.

(b) If x(t) ≥ dD(t) and u(t) > M or u(t) < �M (i.e.,
if constraint (4) is not binding but constraint (5)
is binding), then the optimal solution is uðtÞ� ¼
M or uðtÞ� ¼ �M.

(c) If x(t) < dD(t) and �M ≤ u(t) ≤ M (i.e., if con-
straint (4) is binding but constraint (5) is not),
then the optimal solution is uðtÞ� ¼ dð _DðtÞþ
DðtÞ=sÞ.

(d) If x(t) < dD(t) and u(t) > M (i.e., if both con-
straints (4) and (5) are binding), then uðtÞ� is the
minimum of the solutions of cases (b) and (c).

Observe that the optimal policy is time dependent.
Only one of the optimal solutions of Proposition 1
holds for any given period, but during that period
any one solution can be optimal at different times.
The results of this proposition also hold when there is
an inventory of vehicles at time t = 0. In that case, u(t)
should be set to 0 in any period t before the initial fleet
size reaches D(t)—after which, (9) is followed.
When neither (4) nor (5) is a binding constraint, the

procurement policy u�ðtÞ given by (9) consists of a con-
stant term, a linearly increasing term, and a third term
that oscillates with the same frequency as (but with a
different phase from) the demand. Purchasing/selling
decisions take place before demand increases or decrea-
ses: the numerator sb(ax cos(xt) + q sin(xt)) of the
third term increases before the demand term b sin(xt)
increases. It is trivial to show that, as the ratio b/sx
decreases, the third term of (9) decreases and
approaches zero. Unlike relief operations, development
programs do not expect to experience a high b/x ratio
and so, as Proposition 1 shows, the dynamics of fleet
size variation depend mostly on the vehicle replace-
ment frequency 1/s.
Depending on the parameter values, either one or

both of constraints (4) and (5) may be binding. If (4) is
binding and (5) is not, then the optimal policy is
uðtÞ ¼ dð _DðtÞ þ DðtÞ=sÞ. If both constraints are bind-
ing, then the optimal policy is to increase fleet size
quickly by setting u(t) = M until there are enough
vehicles to cover the demand. This result is in line
with what we observe from the LP model. In that
model, as the budget constraint narrows, the model
calls for purchasing as many vehicles in each period as
are allowed (by the available budget) until the fleet
size can accommodate demand. It is interesting that,
depending on the parameter values, the optimal fleet
size strategy changes from one that levels fleet size by
smoothing out demand requirements to one that
“chases” demand (Slack et al. 2006). A combination of
these strategies is required when the procurement rate
u(t) is constrained and demand requirements are high.

The results of Proposition 1 can be summarized as
follows: Depending on the portion of demand coverage
and procurement constraints, there are three main regions
occupied by the procurement policy for the demand func-
tion at + b sin (xt). In the first region, the procurement
policy is given by (9); a portion of the demand is procured
at t = 0, after which the procurement policy has oscillatory
characteristics similar to those of demand. In the second
region, the procurement policy is to match demand. In the
third region, an early buildup of fleet size to meet future
demand needs is optimal.
In order to examine the link between budget

requirements and operational environment, we con-
sider the effects of x and s on the budget required for
the demand function (7). Given that budget require-
ments may vary as a function of time and mission
characteristics, we consider the upper bound of those
requirements associated with completing a mission.
Let h denote the cost of holding vehicles (maintenance
and miscellaneous costs) and p the cost of purchasing
a vehicle. Then the following equation describes the
maximum budget available in any period:

�B ¼ max
t2½0;T�

ðhxðtÞ þ puðtÞÞ: ð10Þ

Our next proposition examines the effects of s and
x on the upper limit of the budget, �B.

PROPOSITION 2. Let xR ¼ 1=s denote the frequency of
vehicle replacement. If constraints (4) and (5) are not
binding, then the upper limit of the budget requirements
to complete a mission are affected by the frequency of
demand oscillation as follows:

d�B

dx

\0 if x
xR

[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðh2rs2þp2ðqs2þrÞÞ

p
�hrs

prs2 ;

[ 0 if x
xR

\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðh2rs2þp2ðqs2þrÞÞ

p
�hrs

prs2 :

8<
: ð11Þ

This proposition states that completing missions for
which x=xR is high requires a budget with a lower
upper bound. The intuition is as follows. Recall from
Proposition 1 that the optimal policy oscillates with
the same frequency as the demand but with a differ-
ent phase. In other words, the procurement of vehi-
cles meant to replace old vehicles occurs during the
same period in which new vehicles are procured to
prepare for the next demand peak. This dynamic
allows us to minimize the mismatch between fleet size
and demand, as fleet size is augmented in a single
period to compensate for both the increase in demand
and the vehicle replacement. Increasing procurement
levels in one period to compensate for both vehi-
cle replacement and future demand reduces the
time-averaged variability u2ðtÞ of purchasing/selling
decisions and consequently the fleet size–demand
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mismatch. Hence, overall costs decrease as well. This
outcome may not prevail, however, if vehicles need to
be replaced often and demand increases much later in
the future. In that case, frequent purchasing/selling
decisions are necessary to compensate for vehicle
replacement. That being said, it may not be economi-
cal to purchase more vehicles (to satisfy future
demand) and thereby incur high holding costs.
Proposition 2 reveals a link between budget

requirements and such operational characteristics as
demand oscillation and vehicle replacement policies.
It also suggests that the upper budget limit in mis-
sions for which the frequency of demand peaks is
greater than the frequency of vehicle replacement is
lower than that limit in missions for which this
inequality is reversed.

5.3.2. Increasing or Decreasing Demand. We
now consider a simpler version of the demand func-
tion (7) in which we concentrate only on the increas-
ing (decreasing) term at. This case is representative
when both the magnitude b and frequency x of
demand oscillation are small, as usually occurs when
the ICRC must continuously expand its actions in a
country. We then have the following proposition.

PROPOSITION 3. For the demand function at, the optimal
fleet size is

x�ðtÞ ¼ aqs2

qs2 þ r
t ð12Þ

and the optimal control is

u�ðtÞ ¼ aqs2

qs2 þ r
1þ t

s

� �
: ð13Þ

This proposition yields some useful intuition.
Observe that Equation (12) implies qs2=ðqs2 þ rÞ � 1;
this term approaches unity as the vehicle replacement
interval s increases. Therefore, constraint (4) is always
binding when d > 1—that is, when demand must
always be satisfied. Also, note that constraint (4) will
either bind for the whole demand interval [0,T] (when
d [ qs2=ðqs2 þ rÞ) or it will not bind at all. This
explains why the optimal policy is not time depen-
dent.
For a linearly increasing demand function, if con-

straint (4) is not binding then the only demand that
should be satisfied is the portion qs2=ðqs2 þ rÞ, which
increases in s. To see this, note that qs2=ðqs2 þ rÞ ! 1
as s?∞. Thus, optimal fleet size is closer to demand in
regions with shorter travel distances and hence with high s
(e.g., in Haiti) than in regions with longer travel dis-
tances to cover and hence with low s (e.g., in Sudan).
In regions with shorter-distance missions and hence
less frequent vehicle replacement, following demand

more closely is a less expensive policy than it would
be in regions with longer distance missions and hence
more frequent vehicle replacement.
For an increasing demand function D(t) = at, we

use u(t) to represent the increase in fleet size during
period t. Taking the derivative of (10) with respect to
both q and r, we find that

d�B

dq
¼ arsðtðhsþ pÞ þ psÞ

ðqs2 þ rÞ2 [ 0; ð14Þ

d�B

dr
¼ � aqsðtðhsþ pÞ þ psÞ

qs2 þ rÞ2 \ 0: ð15Þ

These equalities imply that, for a linear demand
function, the budget increases when the penalty for
supply–demand mismatch is high.
Another notable interaction is that between the

individual replacement policy s and the fleet budget
constraint. Although the optimal individual replace-
ment policy aims to minimize each vehicle’s opera-
tional costs, system constraints may render this policy
infeasible in some situations. Despite the exogenous
reasons (e.g., maintenance policies) driving these
decisions, it remains possible for decision makers to
modify them without affecting fleet quality. For the
demand function at, the budget is affected by s as
follows:

d�B

ds
[ 0 if s\F ,
\ 0 if s[F ;

�
ð16Þ

here

F :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðT2ðh2rþ p2qÞ þ 2hprT þ p2rÞp þ hrT þ pr

pqT
:

Thus, as s increases, the budget increases up to a
threshold but then decreases afterward. The reason
is that, when s is small, a higher portion of the fleet
per unit time is replaced, and so additional new
vehicles are needed to satisfy the demand. The
resulting increased costs are due to the increased
variability of u(t), which (as shown with regard to
the LP model) is expensive. Even so, with higher
values of s, this variability cost is increasingly out-
weighed by the benefit of replacing vehicles at a
lower rate.

5.3.3. Demand Fluctuating around a Constant
Mean. We now consider a demand function that var-
ies around a constant:

DðtÞ ¼ aþ b sinðxtÞ: ð17Þ
PROPOSITION 4. When constraints (4) and (5) are not
binding, for the demand function a + b sin(xt), the opti-
mal fleet size is
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x�ðtÞ ¼ aqs2

rþ qs2
þ bq sinðxtÞ
qþ rx2 þ r

s2
ð18Þ

and the optimal control is

u�ðtÞ ¼ aqs
rþ qs2

þ bqs½sinðxtÞ þ sx cosðxtÞ�
qs2 þ rx2s2 þ r

: ð19Þ

Similar to the results of Proposition 1, here we have
four cases for the optimal solutions depending on
whether (4) and/or (5) are binding. However, we
forgo discussing these cases because doing so does
not enhance our intuition of the problem beyond that
obtained via Proposition 1. The main difference is
that, for the unconstrained case, Proposition 4 has
no counterpart to the linearly increasing term in
Equation (9).
We emphasize that our model suggests a level strat-

egy when the HO is restricted in the rate at which it
can increase or decrease the fleet size. Restrictions of
this kind are common in HOs and result from opera-
tional constraints and bureaucratic reasons such as
budget limitations, difficulties in shipping vehicles
to different countries, the manufacturer’s capacity
restrictions, and the often vague timelines of humani-
tarian projects. Given that these constraints are fairly
common in HOs, our model suggests that a level fleet
size strategy is usually optimal in the humanitarian
sector.

5.4. Comparison of LP- and QC-Based Policies
The QC model just described can be applied at the
HQ level to identify optimal policies for aggregated
fleet sizing. Because demand is relatively stable in
development programs, past demand data can be
used to estimate the parameters a, b, and x in the
demand function (7) and to generate aggregate fore-
casts for future periods. The parameters q and r can
likewise be set based on past experience—or “reverse
engineered” by applying the model to previous opti-
mal policies obtained via the LP model. Finally, once
the specific function for the optimal policy has been
determined, optimal vehicle sizes and optimal
purchasing/selling quantities can be found for each
period of interest by computing numerical values for
the state function x(t) and for the control function u(t)
in those periods.
We shall illustrate the practical application of the

QC model—and assess its validity—by comparing
the optimal policy it generates for a specific demand
scenario against the optimal policy generated by the
LP model for the same scenario. We examine the
country with the most complex and most general
demand function among those we studied, that is,
Sudan. The demand function in Sudan consisted of

the three distinct patterns outlined in section 5.3.
From t = 0 to t = 22 it was constant, with an initial
value of 50 vehicles (i.e., a = 50 without oscillation).
From t = 23 to t = 33, demand increased linearly with
a = 15.2. Finally, from t = 34 to t = 84, it oscillated
around a constant a at frequency x � 0.26. Therefore,
the demand is estimated by setting a = 15.2 for peri-
ods 23–33 and a = 250 for the last interval (approxi-
mated as Dt ¼ 250 þ 20 sin 0:26t). We calculated

s ¼ 100;000
1;181:8 � 84, where 100,000 km is the optimal

vehicle replacement threshold (Pedraza Martinez and
Van Wassenhove 2013) and 1,181.8 km is the average
planned usage of vehicles in Sudan (see Table 1). Both
r and q are set at HQ. We set a rather large r = 250
compared to q = 2, assuming that the per-period cost
of each vehicle above (or below) the average demand
is significantly higher than the costs associated with
attempting to match demand.
The QC model generates the following policy. From

t = 0 to t = 22, it retains the initial stock. From t = 23
to t = 33, Proposition 3 holds: new vehicles are pur-
chased in accordance with Equation (13), and the opti-
mal fleet size at any time during this period is given
by Equation (12). Finally, Proposition 4 holds from
t = 34 to t = 84; for this period, the model calls for
purchasing new vehicles per Equation (19) and the
optimal fleet size is given by Equation (18).
We used the policy just summarized to calculate

the number of fleet vehicles specified by Equations
(12) and (13) at discrete intervals t = 0,1,…,T. We then
compared these values to those generated by the LP
model and calculated the absolute value of the rela-
tive difference. The comparison—also illustrated in
Figure 3—indicates that the differences QC vs. LP
(6.2%), QC vs. Demand (4.1%), and LP vs. Demand
(5.4%) are limited and that the policies generated by
the two models have a similar structure. However,
the LP model typically generates a solution that
exceeds demand, whereas the QC model keeps the
fleet size closer to demand.

6. Conclusions, Limitations, and Future
Research

In this article, we examine the properties of optimal
humanitarian fleet procurement policies for develop-
ment programs. After studying the operations of a
large international organization (the ICRC) in
Afghanistan, Sudan, and Ethiopia, we apply a LP
model to calculate the optimal fleet size in each
country. We then draw on these LP results to build a
stylized QC model that, while preserving the proper-
ties of the LP solution, is more parsimonious and has
data requirements that are better matched with the
data to which HO headquarters typically has access.
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We use the model to characterize the general struc-
ture of the optimal policy under different demand
scenarios and to obtain additional intuition on the
trade-offs faced by HOs in their fleet management
decisions. After demonstrating that the QC model’s
results are consistent with those of the LP model, we
discuss the former’s applicability to strategic asset
planning.
We find that, if HOs are constrained by the rate at

which fleet size levels can be changed, then the opti-
mal policy is to level fleet size by smoothing out
demand requirements. Yet if HOs can replace vehicles
frequently, face substantial overstocking and under-
stocking costs, and are relatively unconstrained by
procurement budgets, then the optimal policy is to
follow a so-called chase strategy. Because the humani-
tarian context seldom satisfies the latter conditions,
our results also indicate that a level strategy would be
optimal for most humanitarian missions. The analysis
presented here can also be used to identify cases in
which HOs can revert to simpler, intuitive procure-
ment strategies that do not require data-intensive
solutions. For instance: if budgets are tight, then in
each period simply purchase as many vehicles as the
budget allows until peak demand is eventually met.
In addition, we show that lower budgets are required
for missions in which the demand oscillation fre-
quency exceeds the vehicle procurement frequency.
Our findings should be viewed in light of some lim-

itations. First, the models are developed in the context
of a fleet consisting of homogeneous vehicles. The
case of heterogenous fleets could be treated either by
decomposing the problem and running the models
separately for different model categories or by adding
model-specific indicators. Second, we have assumed
that demand requirements are known before the pro-
gram and do not change during the program. In the
LP model, we assumed also that demand is exoge-
nous and independent of fleet size, but when HOs
increase their fleet size they may decide to run more

missions simply because they can. Third, we assumed
that a constant budget is available in each period.
That might be true for large HOs, but not for small
ones. Future research could well examine the relation-
ships among the procurement policies and financial
structure of HOs and their fleet management policies.
Finally, the LP model parameters were estimated
using data from a specific organization. Although the
ICRC is a large and representative HO, the validity of
our results should be tested also in other empirical
contexts.
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