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In humanitarian fleet management, the performance of purchase, assignment, and sales decisions is deter- 

mined by dynamic interactions between the fleet composition, the time-varying and uncertain demands 

on the fleet, and the depreciation of the vehicles as they are exploited. We propose to evaluate purchase, 

assignment, and sales policies in a holistic simulation environment that directly models heterogeneous 

vehicle attributes and tracks their evolution over time. Using data from a large international humanitar- 

ian organization (LIHO), the simulator can identify the rationale behind seemingly ad-hoc decisions by 

field managers at LIHO. For instance, by selling vehicles later than LIHO recommends, managers are ac- 

tually reducing their costs; similarly, managers decline to switch vehicles between mission types because 

the benefits to the operational cost turn out to be marginal at best. 
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. Introduction 

In humanitarian operations, fleet management is one of the 

ost significant drivers of total operating cost. To give an exam- 

le, Arsenault et al. (2018) reports that, in 2011, the UN High Com- 

issioner of Refugees (UNHCR) had a fleet of more than 6500 

ight vehicles, with an estimated operating cost of 130 million 

SD. Even after a concerted effort to downsize the fleet, in 2017 

he organization still owned 5530 light vehicles. Pedraza-Martinez 

t al. (2011) cites estimates by domain experts that place total 

orldwide operating costs for humanitarian fleets at 1 billion USD, 

ith high projected growth. These high costs reflect the critical 

ole of vehicles in last mile delivery of humanitarian aid Balcik 

t al. (2008) . Improved fleet management alleviates human suffer- 

ng both directly (by completing more humanitarian missions) and 

ndirectly (by saving money that can be spent on other humanitar- 

an programs). 

In general, fleet management is a well-studied subdomain of 

perations research ( Crainic et al., 2012 ). However, the humanitar- 

an sector presents very different challenges from the commercial 

ne. Field managers at humanitarian organizations (HOs) are often 
∗ Corresponding author. 

E-mail addresses: guly@sustech.edu.cn (L. Gu), iryzhov@rhsmith.umd.edu (I.O. 

yzhov), eftekhar@asu.edu (M. Eftekhar). 

m

a

c

W

ttps://doi.org/10.1016/j.ejor.2020.12.019 

377-2217/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
ot trained in, or accustomed to, the use of operations research 

ools. What is more, the data necessary to calibrate such tools 

ay not be available, e.g., in developing countries with ongoing 

onflict. Indeed, the UNHCR report by Arsenault et al. (2018) notes 

hat “the exact costs of operating the fleet cannot be accurately 

easured due to lack of data”. Consequently, implementing the 

esults of various analytical approaches in the field has met with 

imited success. Eftekhar et al. (2016) presented empirical evidence 

hat field managers do not follow standard policies recommended 

ither by researchers or by international agencies, suggesting that 

what seems logical from the headquarters’ perspective may be 

llogical or inconvenient for the field’’. 

The authors of the present paper encountered similar state- 

ents, expressed by logistics officers and fleet managers at several 

ajor international HOs in a series of interviews. 1 To give a 

pecific example, one of these HOs recommends that field man- 

gers sell or dispose of vehicles once they are used for either 5 

ears or 150,0 0 0 km, whichever comes first. The consensus among 

nterviewees, however, was that field managers did not follow 
1 We interviewed with two freelance consultants, a logistics officer and a fleet 

anager at GOAL International, an executive fleet manager and two logistics officers 

t the International Committee of the Red Cross, a senior advisor of the supply 

hain management unit at Catholic Relief Services, and two logistics officers at the 

orld Food Program. 
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his policy in practice, and in fact continued to exploit vehicles 

or much longer than either of these thresholds, although there 

ppeared to be no single agreed-upon reason for this. 

The main contribution of our paper is a holistic simulation en- 

ironment that models and evaluates the acquisition, assignment, 

nd disposition of multi-attribute vehicles in field operations. We 

hoose to focus on evaluation , rather than optimization . As men- 

ioned previously, even the higher-quality data collection efforts in 

his sector may simply not be able to provide reliable inputs for 

etailed assignment and/or routing models, such as those in Ben- 

al et al. (2011) or Hamedi et al. (2012) . Moreover, the assumptions 

sed in formal models often do not reflect the full complexity of 

he humanitarian context (see, e.g., Gralla et al., 2014 for discus- 

ion along these lines), and if they do, the models quickly become 

nalytically (and even numerically) intractable. On the other hand, 

hile field managers often make immediate decisions without 

igorous analysis, they also possess a great deal of expertise and 

ntuition ( Kahneman et al., 2009 ) which often leads to successful 

ompletion of complex tasks, particularly under time pressure 

 Hayashi, 2001 ) and in unstable environments ( Khatri & Ng, 20 0 0 ).

ith these considerations in mind, we develop a simulation-based 

pproach to counterfactual analysis in humanitarian fleet manage- 

ent that can explain why field managers make certain types of 

ecisions. 

.1. Literature review 

The complex settings of humanitarian operations have given 

ise to a considerable body of analytical work on decision-making 

n problems such as supply chain integration ( Ni et al., 2018; Vana- 

akumari et al., 2016 ), facility location ( Balcik et al., 2016 ), preposi-

ioning strategies ( Acimovic & Goentzel, 2016; Rawls & Turnquist, 

012; Salmeron & Apte, 2010 ), inventory pooling mechanisms and 

eld coordination ( Ergun et al., 2014; Toyasaki et al., 2017 ), and aid

istribution and last mile delivery ( Jahre et al., 2016 ). Much effort 

as also been devoted to understanding the challenges that arise 

hen attempting to implement improvements in this sector: these 

nclude decentralized decision-making ( Pedraza-Martinez et al., 

012 ), time constraints and suboptimal cost allocations ( Dolinskaya 

t al., 2011 ), and lack of coordination between actors ( Balcik et al.,

010; McClintock, 2009 ). Some of these challenges can be ad- 

ressed only at the structural, rather than operational, level; see 

 Pedraza-Martinez et al., 2020 ) for an investigation of mechanism 

esign for improved coordination between headquarters and local 

ffices. 

In this paper, we specifically consider last mile delivery of 

umanitarian services from local offices to affected commu- 

ities ( Balcik et al., 2008 ). Existing analytical and empirical 

esearch on this topic has examined fleet sizing ( Kunz et al., 

019 ), vehicle maintenance and replacement ( McCoy & Lee, 2014; 

edraza-Martinez et al., 2013 ), and field vehicle fleet management 

 Eftekhar et al., 2016; Pedraza-Martinez et al., 2011 ). However, 

hese various aspects of fleet management are usually studied 

n isolation. For example, Pedraza-Martinez & Van Wassenhove 

2013) studied vehicle disposition (using an analytical model), 

nd arrived at the conclusion that HOs should replace vehicles 

uch earlier than the industry standard. However, this conclusion 

elied on several simplifying assumptions, one of them being 

hat the monthly mileage 2 of every vehicle is always constant. 

n practice, the situation is far more complex: the performance 

f a replacement policy (or other type of policy) is subject to 

igh uncertainty due to unpredictable demand, budget constraints, 
2 We use the word “mileage” informally in this paper to mean “distance trav- 

lled”, but all of the numbers will actually be in kilometers. 

t

c

f

m

682 
nfrastructure problems and other issues ( Eftekhar et al., 2014; 

cCoy & Lee, 2014 ). Furthermore, no two vehicles are ever exactly 

like: they are acquired at different times, and their individual 

ges and odometers not only affect performance, but also change 

ynamically over time. Managers’ decisions may also be influenced 

y these dynamic attributes: for example, they may prefer to place 

igher loads on newer or older vehicles. 

Researchers thus face the following dilemma. If these factors 

re incorporated into the model, it will no longer admit a tractable 

olution. Yet, if one ignores them, one runs the risk that the opti- 

al policy for the simplified setting will be suboptimal in reality. 

ne way to resolve this problem is to use simulation to evaluate 

nd compare various policies in a realistic setting. Simulation has 

een applied in this way to study policies for many applications 

f interest to the public sector, such as HIV/AIDS prevention 

 Rauner, 2002 ) and emergency response ( Kaplan, Craft, & Wein, 

002 ). In the context of humanitarian logistics, this approach will 

ot produce an “optimal” policy, but it allows us to test simple 

nd practicable decision rules, such as might appeal to a field 

anager. As discussed further down, it can also shed light on 

ow certain choices made by field managers are rational given the 

ircumstances. 

Previous applications of simulation to humanitarian operations 

nclude agent-based models ( Altay & Pal, 2014; Crooks & Wise, 

013 ) that look for emergent patterns from interactions between 

I agents, or discrete-event models that study facility location and 

onfiguration in rapid-onset disasters ( Sahebjamnia et al., 2017 ). 

ost of these papers evaluate static decisions that are made once 

efore the simulation starts; this is also true of many optimization- 

ased approaches such as ( Ukkusuri & Yushimito, 2008 ). When it 

omes to simulating dynamic decisions that depend on evolving 

ystem state variables, there is plenty of research for commercial 

pplications (one landmark study being Simão et al., 2010 ), but the 

umanitarian literature has mostly been limited to single-attribute 

nventory management or budget allocation ( Beamon & Kotleba, 

006; Chacko et al., 2016; Iakovou et al., 2014 ). Such settings are 

ot adequate for fleet management, where costs are determined 

y the management of operating assets (vehicles), in a way that 

hanges over time based on the changing attributes of the fleet. 

ur paper offers a way to handle these complex dynamics with a 

reat degree of modeling granularity; this is the main distinguish- 

ng feature of our work as compared to the existing applied hu- 

anitarian logistics literature. 

.2. Overview of approach and findings 

As was discussed earlier, our approach focuses on simulation- 

ased policy evaluation. We calibrated and validated the simulator 

sing data provided by a large international humanitarian organi- 

ation (LIHO). Using detailed data for multi-attribute vehicles in 

ifferent countries, we designed several modules of the simulator: 

) We treat odometer data as a (censored) stand-in for demand, 

nd develop a stochastic model of non-stationary, attribute- 

ependent demands over time. The simulated demand trajectories 

ollow the same overall trend as what was observed historically, 

ut incorporate random variation, allowing us to test different 

what-if” scenarios. 2) Salvage data are used to calibrate a statis- 

ical model for the depreciation of vehicles as they are exploited 

ver time; a vehicle is automatically removed from the fleet once 

t has lost all of its value, but can be sold earlier to redeem a

ortion of that value. 3) Refueling and maintenance data are used 

o calibrate statistical models that calculate short-term operating 

osts (fuel and maintenance). All of these costs are modeled as 

unctions of vehicle attributes, which in turn are impacted by fleet 

anagers’ decisions. 
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We then deployed the simulator to compare a variety of 

hreshold-based policies for vehicle procurement, assignment, and 

isposition. 3 We highlight two cases where the results were par- 

icularly interesting. First, we compared LIHO’s recommended 5 

ear/150,0 0 0 km disposition policy with other combinations of 

ge/odometer thresholds in realistic demand scenarios, and found 

hat LIHO’s policy was too quick to dispose of vehicles. The best- 

erforming sales threshold does become lower as the load on the 

eet increases, but even for very high loads it is still higher than 

IHO’s recommendation. We observed this very consistently, even 

hen our model was recalibrated with data from a different devel- 

ping country on another continent. Thus, we arrive at the oppo- 

ite conclusion from Pedraza-Martinez & Van Wassenhove (2013) , 

ut interestingly, our findings are much closer to what actually 

appens in the field. 

The second case deals with the value of coordination. In prac- 

ice, LIHO assigns each new vehicle to carry out missions of a par- 

icular type, and does not change this assignment for the remain- 

er of the vehicle’s lifetime. The literature suggests that it might be 

referable to switch types dynamically: ( Pedraza-Martinez et al., 

011 ) argues that improved coordination would reduce the un- 

redictability of demand on fleets, while ( Bhattacharya, Hasija, & 

an Wassenhove, 2014 ) finds that asset transfer between programs 

n an HO leads to more efficient operations. However, our counter- 

actual analysis of switching found that the economic benefits are 

arginal at best, even in artificial “off-sync” scenarios where de- 

and for one mission type increases just as demand for another 

ype ramps down. We are not suggesting that coordination can 

ever be useful, but we believe that our results explain why field 

anagers do not seem to view it as an issue of primary impor- 

ance: under current operating conditions, the benefits may not be 

orth the effort. 

In both cases where our results disagree with existing literature, 

hey nonetheless agree with current practice. Field managers do 

ot seem to base their decisions on any specific policy, including 

hose considered in our study; nonetheless, the managers’ intuitive 

erception of the situation, based on their experience or other fac- 

ors, may lead them to reject policies that are clearly suboptimal, 

s in the case of LIHO’s recommended disposition policy. Overall, 

ur results suggest that these intuitive decisions should perhaps 

e regarded more carefully than has heretofore been the case in 

he literature. More broadly, the main takeaway should perhaps 

e that “one-size-fits-all” rules (such as LIHO’s sales threshold) 

re overly simplistic, and attempting to impose them from head- 

uarters may be counterproductive. Instead, humanitarian organi- 

ations will benefit from a nuanced approach, where field man- 

gers have more authority to decide, e.g., the sales threshold based 

n the current demand level. 

. Simulation for policy evaluation 

Section 2.1 provides a high-level description of the simula- 

ion environment. Section 2.2 gives a rigorous discussion of the 

ynamics of the simulator that enable us to model and track the 

volution of fleet attributes. 

.1. Overview of the simulator 

Fig. 1 provides a conceptual model of the simulation environ- 

ent. The main inputs of the simulator, to be provided by the user, 
re as follows: 

3 The LIHO dataset itself is proprietary, but our code for the simulator is available 

t the following URL: https://bit.ly/3ovV0CU . 
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1. Fleet composition . The “state variable” describes the specific at- 

tributes of each individual vehicle in the fleet at a given mo- 

ment. In the LIHO dataset, these are the age (in months) and 

odometer (in kilometres) of the vehicle; the vehicle type (e.g., 

make and model, but can also be aggregated by size, engine 

power or other factors); the mission type and location to which 

the vehicle is assigned; the vehicle’s accident history (e.g., num- 

ber of accidents); and its residual value , which is bounded above 

by its original purchase price. It is entirely possible for every 

vehicle to have a unique combination of attributes, with no two 

vehicles in the fleet being exactly alike. 

2. Policies . The decision rules to be evaluated include purchases 

of new vehicles, sales or disposition of aging vehicles, or 

assignment of vehicles to missions. LIHO’s recommended 5 

year/150,0 0 0 km rule is an example of a sales policy. A sim- 

ple purchase policy may be to immediately replace any vehicle 

that is sold; assignment policies may prioritize newer or older 

vehicles, or attempt to distribute the load on the fleet evenly. 

Policies should be sufficiently detailed to enable the simulator 

to automate all purchase, sales and assignment decisions based 

on the state at any time. 

With this starting configuration, the simulator generates de- 

ands on the fleet from a stochastic simulation model; this de- 

and model is a key module of the simulation environment, and 

hould be customized using the available data. In the LIHO dataset, 

emands have two key attributes, namely type (a simple categor- 

cal value in our dataset, but potentially could reflect the type of 

ork that is required, the priority of the work, or the degree of 

anger involved in carrying it out) and distance that the vehicle 

as to travel (in kilometres). The demand model is calibrated us- 

ng historical data, but individual simulations from the model may 

eviate from the precise historical values that happened to have 

een observed. 

The simulator then assigns demands to vehicles using the 

pecified assignment policy, updates the attributes of the fleet 

for example, assigning a mission to a vehicle will increase its 

dometer), and repeats the process for the duration of the plan- 

ing period. In each decision epoch, a cost is incurred based on 

ehicle attributes across the whole fleet. Cost models also require 

xtensive customization based on data. Our approach was to fit 

 number of statistical models to predict fuel and maintenance 

osts, as well as on depreciation, as functions of the evolving fleet 

omposition. These models are necessary because our historical 

ecords do not provide detailed costs for every possible combi- 

ation of vehicle attributes, and so costs must be inferred when 

unning simulated scenarios that do not precisely match what 

as observed. The interaction between different modules of the 

imulator, during a single decision epoch, is illustrated in Fig. 2 : 

he policy takes the state of the fleet and demand as inputs, and 

roduces a cost and a new state as outputs. 

At the end of the simulation, the output consists of total costs 

ncurred by following the pre-specified policies. These include fuel 

nd maintenance costs, plus purchase costs for any vehicles ac- 

uired by following the purchase policy, minus the residual values 

f any vehicles that were sold before the end of their lifespan as 

pecified by the sales policy. Since the demands are generated us- 

ng stochastic simulation, one can run the simulator many times 

ith the same starting conditions to estimate the mean perfor- 

ance of a given set of policies. In addition to cost, the simula- 

or also returns the average completion rates for all mission types, 

hich is useful for policymakers since minimizing cost is not the 

nly goal in humanitarian contexts. 

https://bit.ly/3ovV0CU
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Fig. 1. Conceptual model of the simulation environment. 

Fig. 2. Illustration of the interactions between different modules of the simulator. 
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.2. Dynamics of the fleet composition 

In this section, we formalize the dynamics used inside the sim- 

lator to model the evolution of fleet attributes over time. We use 

he framework and notational system of stochastic dynamic re- 

ource allocation (see ch. 14 of Powell et al., 2011 ), in which a “re-

ource” (vehicle) is used to serve “demands” (missions). The state 

f a single vehicle is defined by an attribute vector a, composed of 

ultiple attributes that may be numerical or categorical: 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a 1 
a 2 
a 3 
a 4 
a 5 
a 6 
a 7 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

Age 
Odometer 
Location 

Model type 
Mission type 

Accident history 
Residual value 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(1) 

et A denote the set of all possible attribute vectors. Let t = 

 , 1 , . . . , T be a time index representing the tth “decision epoch,”

r instant in time when it is necessary to make a purchase, sales, 

r assignment decision. Our odometer data is aggregated by month 

unfortunately, we do not have access to more granular data), so 

e assume that one month elapses between time t − 1 and t for 

ach t . However, one could potentially use the same framework to 

odel more frequent decisions. 

Let R ta denote the number of vehicles with attribute vector 

 ∈ A at time t, and let R t = (R ta ) a ∈A represent the overall vehi-

le inventory. 4 One may think of R t as a vector that has very high

imensionality, but is very sparse (as R ta > 0 for a very small num-
4 To accommodate purchase decisions within the same modeling framework, one 

ould also add a “dummy” attribute to (1) to represent vehicles that are available 

t

b

684 
er of attribute vectors at any given time). Of course, when imple- 

enting the simulator, one does not explicitly code R t as a vector; 

ather, we use this notation to make our presentation more rigor- 

us. Next, we denote by ˆ R ta the exogenous (randomly occurring) 

hange in the number of vehicles with attribute vector a between 

ime t − 1 and time t . For example, such changes could occur due 

o accidents. We let ˆ R t = ( ̂  R ta ) a ∈A denote all such changes to the 

eet. 

The attributes of each demand (mission) are given by 

 = 

⎛ 

⎜ ⎝ 

b 1 
b 2 
b 3 
b 4 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

Location 

Mission type 
Travel distance 

Order 

⎞ 

⎟ ⎠ 

, 

nd we similarly denote by B the set of all attribute vectors b. The 

rst three attributes are self-explanatory. We assume that all mis- 

ions with the same location and mission type are sorted in some 

rder to be used for assignment, and the fourth attribute describes 

he (integer-valued) position of a given mission in this ordering. In 

he simplest case, missions could be sorted in the order in which 

hey become known to the manager; if, however, the manager has 

dvance knowledge of multiple missions, it is possible to order 

hem in other ways, e.g., by travel distance or priority. 

The quantity B tb is defined to be the total number of missions 

ith attribute vector b that are known to exist at time t, while ˆ B tb 

enotes the number of new missions with attribute vector b that 

rst appear at time t . In our study, we assume that demands are 

ot backlogged (any demand that cannot be satisfied immediately 

s lost), so B = 

ˆ B ; however, it is straightforward to incorporate 
tb tb 

o be purchased, or that have been purchased and are scheduled to join the fleet, 

ut that are not yet available for assignment. 
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acklogs into the model. As before, we let B t = (B tb ) b∈B denote the

ull vector of all currently-existing demands. Because of the fourth 

ttribute, two missions that exist at the same time cannot have 

wo identical attribute vectors, thus making B t a binary vector. 

The system state vector S t = (R t , ˆ B t ) represents all the informa- 

ion that is known to the decision-maker at time t, before the next 

ecision is made. We can now model the decisions themselves. In 

he time interval of one month, a vehicle can be assigned to multi- 

le missions; for this reason, an assignment decision d that can be 

pplied to a vehicle is represented by an N-vector, where N is the 

otal number of distinct demands (that is, the number of distinct 

ttribute vectors b for which B tb = 1 ) available at time t . These 

issions are sorted by their b 4 attribute values, and the k th ele- 

ent d k of the vector d corresponds to a unique existing mission 

ith attribute vector b (k ) satisfying b (k ) 
4 

= k . The statement d k = 1

eans that decision d assigns this mission to the given vehicle. 

f all entries of d are equal to zero, the vehicle remains idle for 

he entirety of the next time period. Denote D 

D as the set that in-

ludes all possible d, and let D 

M be a set of additional decisions 

ot related to specific demands (for example, purchase decisions). 

hus, every decision that can possibly be applied to a vehicle is an 

lement of the set D = D 

D ∪ D 

M . 

Now, let x tad be the number of vehicles with attribute vector a 

o which we apply the decision d at time t, with x t = ( x tad ) a ∈A ,d∈D . 
his decision variable must satisfy the conditions 

 

∈D 
x tad = R ta , ∀ a ∈ A , (2) 

 

 ∈A 

∑ 

d∈D D 
x tad ≤ B tb (k ) , ∀ k = 1 , . . . , N, (3) 

 tad ≥ 0 , a ∈ A , d ∈ D, (4) 

ondition (2) means that, for any a, exactly R ta vehicles are avail- 

ble to act on. Condition (3) means that N distinct missions are 

vailable to be assigned. Condition (4) is straightforward. We may 

lso impose problem-specific conditions: for example, we may 

ish to prohibit assignments where the vehicle and mission are 

ot in the same location, or if the mission is not of the type to

hich the vehicle has been assigned by LIHO. We may also limit 

he total number of missions that a single truck can fulfill per 

onth (for example, by setting a maximum daily travel distance). 

Let X t be the set of all x t that satisfy (2) - (4) . The decisions

re determined based on user-specified policies; thus, x t = X πt ( S t ) , 

here X πt is a mapping on the state space into X t , with the su-

erscript π denoting the “name” of a particular policy. In words, 

 policy sees the system state S t at time t and converts this state 

nto a feasible assignment decision x tad for each a and d. 

When we act on a vehicle with attribute a using decision d, the 

ttribute vector of the vehicle changes. The new attribute vector 

 

′ = a M (a, d) is calculated using the transition function a M , which

as to be explicitly coded. For example, if d = { 0 , 0 , . . . , 0 } (that is,

o missions are assigned to the vehicle), then a ′ 
1 

= a 1 + 1 , a ′ 
2 

= a 2 ,

 

′ 
3 

= a 3 , a 
′ 
4 

= a 4 , a 
′ 
5 

= a 5 , a 
′ 
6 

= a 6 , and a ′ 
7 

= a 7 − K, where K is the

ecrease in residual value (which must be estimated via a statis- 

ical model to be introduced later) of the vehicle resulting from 

eaving it idle for one month. For notational purposes, we define 

he indicator function 

a ′ (a, d) = 

{
1 , if a M (a, d) = a ′ 
0 , otherwise . 

hen, the new fleet composition arising as a result of our decision 

s given by 

 

x 
ta ′ = 

∑ 

a ∈A 

∑ 

d∈D 
δa ′ (a, d) x tad , 
685 
nd the resource transition from t to t + 1 is given by R t+1 =
 

x 
t + 

ˆ R t+1 if there are any random changes to the fleet. Again, since 

e assume that unfulfilled missions are not backlogged, we have 

 t+1 = 

ˆ B t+1 as mentioned earlier. 

Finally, we describe the evaluation of the policy π . Let c tad be 

he cost of applying decision d to a resource with attribute a at 

ime t . The cost includes maintenance, repair, and purchase costs, 

hich are obtained from statistical models to be discussed later. 

he cost may also be negative if the vehicle is sold (in that case, 

he revenue is equal to the vehicle’s residual value attribute at the 

ime of sale). The total single-period cost is given by 

 t (S t , x t ) = 

∑ 

a ∈A 

∑ 

d∈D 
c tad x tad , 

nd the performance of the policy is calculated as 

 

π = E 

T ∑ 

t=0 

C t ( S t , X 

π
t ( S t ) ) , (5) 

he expected total cost incurred over the given planning period 

hen policy π is used to calculate decisions. The expectation in 

5) is taken over the joint distribution of 
(

ˆ R t+1 , ˆ B t+1 

)
T −1 
t=0 

, and is 

omputationally intractable due to the complex dependence of 

 

S t ) 
T 
t=1 

on these random quantities. However, it is quite straight- 

orward to estimate (5) through simulation: given an initial state 

 0 and a policy π, we can generate M independent trajectories 
ˆ R m 

t+1 
, ˆ B m 

t+1 

)
T −1 
t=0 

for m = 1 , . . . , M and report the sample average 

¯
 

π = 

1 

M 

M ∑ 

m =1 

T ∑ 

t=0 

C t ( S 
m 

t , X 

π
t ( S 

m 

t ) ) , (6) 

here 
(
S m 

t 

)
T 
t=0 

is the sequence of states visited in the m th simula- 

ion run. The average mission completion rate can be estimated in 

 similar way (the costs c tad should be redefined accordingly). 

. Development and calibration of cost and demand models 

Section 3.1 describes the LIHO data used to calibrate the models 

hat follow. Section 3.2 presents our proposed stochastic model for 

imulating demands on the fleet. Sections 3.3 –3.5 discuss statistical 

odels used to estimate costs due to depreciation, refueling, and 

aintenance, while Section 3.6 briefly discusses the simulation of 

ccidents. Here, we focus on explaining the models; see the Ap- 

endix for a more detailed justification of our modeling choices. 

.1. Description of LIHO data 

The LIHO data contains aggregate information about 3846 ve- 

icles across 20 countries during 2004 − 2015 . Some descriptive 

tatistics are given in Table 1 . The results presented here and in 

ection 4 primarily focus on a single country, which we refer to 

s the “focal country” or FC, in which there were 454 vehicles dis- 

ributed among 16 local offices. We chose FC because it had suf- 

ciently many vehicles assigned to it to allow us to reliably es- 

imate cost and demand models. As a robustness check, we also 

erformed a complete recalibration of our model using data from 

 second country (“Country 2” or C2); those results can be found 

n the Appendix. Furthermore, the full 20-country dataset was used 

o calibrate our depreciation model (accounting for heterogeneities 

etween countries). 

In the aggregate cross-sectional dataset, each data point repre- 

ents one vehicle and its attributes at the end of the observation 

eriod, which include 1) unique vehicle ID and the local office 

here the vehicle was stationed; 2) vehicle model type, mission 

ype given to the vehicle; 3) date registered, date on which 

dometer is recorded, final odometer; 4) purchase value, sales 
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Table 1 

Descriptive statistics for aggregate cross-sectional dataset. 

Mean Std. Dev. Median Min Max No. levels 

Country 20 

Age 70.91 39.58 74 1 277 

Odometer 99248.86 76782.26 89937.5 5 1102385 

Annual Distance 18177.65 31321.33 14478.51 0 730500 

Purchase Price 37580.63 35329.58 26637.29 1777.14 227500 

Sales Price 14968.04 18756.90 10951.73 0 190896.79 

Vehicle Type 4 

% Depreciation 0.58 0.25 0.62 0 1 

Accidents 0.27 0.93 0 0 14 

Total Accident Cost 129.78 2010.42 0 0 89000 

Mission Type 7 

Total Repair Cost 353.19 1471.38 0 0 28026.34 
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5 We expect there to be a strong correlation between the observed load on the 

fleet and the total size of all visible missions, so we are using the former as a stand- 

in for the latter. This is consistent with other work in this area, and in any case, the 

LIHO dataset does not provide any other more precise information about demand. 
alue (if sold) or booking value (if not sold); 5) total number of ac- 

idents during the observation period. We mainly use this dataset 

o estimate the residual value of vehicles of different model types, 

ission types, ages and odometers in different countries. Age is 

btained by subtracting the starting date of registration from the 

nal date of record. 

The second dataset includes monthly traveling distances for in- 

ividual vehicles (in FC/C2 only, as loads on the fleet are highly in- 

ividualized by country and even by mission type) over the obser- 

ation period. Unfortunately, distances for individual missions are 

ot available and we were required to work with aggregate dis- 

ance traveled by each vehicle in one month. We use this dataset 

o calibrate the mission arrival process; Section 3.2 presents a 

robabilistic model for generating individual mission distances 

rom a distribution calibrated using the aggregate data. 

The third dataset contains the refueling history of vehicles 

again, in FC/C2 only), and provides the refueling cost as well as 

he age and odometer of the vehicle associated with each refuel. 

e use this dataset to estimate the fuel cost resulting from com- 

leting various missions by vehicles with different attributes. The 

ourth dataset pertains to the maintenance of vehicles in FC/C2, 

nd is used to estimate the maintenance cost of vehicles with dif- 

erent attributes. For individual vehicles, the cost of each mainte- 

ance as well as the age and odometer of the vehicle is recorded. 

hen estimating costs, we eliminated vehicle model types and 

ission types that do not appear with an adequate number of 

ecords in any of the three datasets related to costs. Because many 

odels and mission types appeared very infrequently in the data, 

ur analysis of FC was carried out on one vehicle model type, in 

ne local office, with two possible mission types, involving 160 

ehicles in the monthly travel data, 122 vehicles in the refueling 

ataset and 39 vehicles in the maintenance dataset. 

.2. Demand model 

In the LIHO data, the monthly mileage of a vehicle ranges from 

0 − 30 to upwards of 40 0 0, and there are also many zeroes that

ay represent idle vehicles or missing data. This level of variation 

s consistent for vehicles operating in different sub-delegations or 

andling different mission types. However, it is difficult to evalu- 

te assignment policies based purely on the historical data. First, 

ecause monthly mileage is a consequence of the historical assign- 

ent decisions, we cannot directly calculate how a different policy 

ould have performed in the same time frame. Second, the LIHO 

ata only provide aggregate monthly mileage for each vehicle, and 

oes not show how many individual tasks were performed or the 

ize of each task. Third, monthly mileage only provides informa- 

ion about missions that were completed , and there is no way to 

now how many additional tasks there might have been that were 
686 
isible to the fleet managers, but that could not be completed due 

o lack of resources or other factors. 5 

The goal of the demand module (see Fig. 1 ) is to generate, in

ach time period, a stochastic number of missions whose individ- 

al mileage attributes also vary stochastically. The total monthly 

oads on the fleet should be “realistic,” i.e., they should exhibit the 

ame general trends and magnitudes as the historical loads (for ex- 

mple, gradually rising and falling according to historical trends), 

ut they should not be identical to the historical data. This is be- 

ause 1) we would like to have the flexibility to consider differ- 

nt scenarios, and 2) as discussed above, the historical data may 

ot provide complete information on the total potential load in 

ach month. For example, if we view the historical data as being 

ensored (since we only see mileage for completed missions), we 

ight wish to generate demand trajectories that are consistently 

igher than historical, while following similar trends over time. 

We found that the monthly mileages for vehicles did not exhibit 

ny significant correlation between locations and mission types. 

or this reason, we assume that demands are independent across 

ll location/mission type combinations, and so we estimate an in- 

ependent demand model for each such combination separately 

rom the others. In the following discussion, we take one mission 

ype in the capital city of FC to illustrate how the model works. 

To model the time-varying behaviour of the demand, we con- 

truct a stochastic process ( L t ) 
T 
t=0 

that takes on positive integer 

alues. The value of L t for given t can be viewed in terms of the 

umber of different humanitarian “projects” (distinct development 

ffort s) that are currently active and can generate tasks for the 

eet to perform. Although this is typical in humanitarian logistics, 

he LIHO dataset provides no information about any such projects, 

o the process ( L t ) is a modeling construct rather than an empiri- 

ally observed quantity. One could also view ( L t ) as a kind of “la- 

ent fleet size”, that is, the number of vehicles that we should have 

n hand in order to complete all the tasks. The actual fleet size is 

odeled with the resource variable R t and may be completely dif- 

erent from L t ; in particular, the actual fleet size may be lagging 

ehind the “latent” one, if the fleet managers make delayed reac- 

ions to sudden growth in demand. 

The process ( L t ) is modeled as a G/G/ ∞ queue with batch 

rrivals. Each batch represents an active “project”, with the 

atch size representing the number of vehicles needed in order to 

omplete all the tasks. The “service time” in this system represents 

he lifetime of the project; once this time runs out, the project 

isappears and stops generating tasks, leading to a reduction in 
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emand. The number of “servers” is infinite because there is no 

imit on how many projects may be active at the same time. Thus, 

s the number of busy servers fluctuates over time, we will see 

ome periods of very high demand. 

Because our goal is to generate realistic demands that resem- 

le the overall trajectory of the historical loads, the interarrival 

imes and batch sizes are bootstrapped from the data. Since, in 

he monthly data, we can see the exact time periods when new 

ehicles enter the fleet, we simply use the times elapsed between 

wo such “arrivals’’. Usually, multiple new vehicles are added to 

he fleet at the same time, providing us with the batch size. Thus, 

e are treating historical purchases and fleet sizes as observa- 

ions of L t , though it is possible that these observations are ac- 

ually censored. Unfortunately, if censoring is present, we have no 

ay to know which observations are censored since there may well 

ave been months when all of the visible demand was met by the 

istorical fleet. However, bootstrapping from the data provides us 

ith a rough trajectory for L t over time, and the stochasticity of 

he simulation can be used to generate scenarios that deviate from 

he data in other ways (e.g., with higher demand). 

The service times for the queueing system could also be ob- 

ained by bootstrapping from the observed vehicle lifetimes; how- 

ver, in the data, these lifetimes are right-censored since many ve- 

icles are still in the fleet at the end of the observation period. For 

his reason, we used a Weibull distribution for the service time, 

nd computed the parameters using maximum likelihood estima- 

ion with censoring. 

The total mileage of all new missions that become visible at 

ime t (for the given, fixed mission type/location pair) is then cal- 

ulated as 

 t = 

L t ∑ 

� =1 

Y � , Y � = 

N � ∑ 

n =1 

X n , (7) 

here N � is a positive integer representing the number of distinct 

asks generated by project � in time period t, the values X n for 

 = 1 , . . . , N � represent the mileages required to complete each in-

ividual task, and Y � then represents the total mileage generated by 

roject � . We require the flexibility to model demand at the level 

f individual tasks in order to compare different assignment poli- 

ies (for example, a policy that assigns tasks in order of increasing 

ileage, with the quickest tasks being completed first). 

Since we use the historical fleet size as a stand-in for L t , we

an treat the monthly mileage of each vehicle as an observation of 

 � . Although the data do not tell us anything explicit about N � or

 n , we can estimate distributions for these random variables by 

nterpreting Y � as a compound Poisson random variable, that is, 

 � ∼ Poisson ( λ) and X n ∼ Gamma ( α, γ ) . Under a particular trans- 

ormation of ( λ, α, γ ) , this becomes the well-known Tweedie dis- 

ribution ( Zhang et al., 2013 ), which is widely used in applications 

e.g., in insurance claims modeling, see Smyth & Jørgensen, 2002 ) 

here it is necessary to “reconstruct” the individual components 

f an observed sum. The Tweedie distribution also allows ( λ, α, γ ) 
o depend on covariates such as the fleet size. 6 The Appendix gives 

he estimated values of these parameters for various cases that we 

onsidered. 

Fig. 3 provides an illustration of how the output of the demand 

odel is “realistic” without being identical to the real data. First, 

ig. 3 (a) shows two realizations of the demand-generating pro- 

ess ( L t ) compared to the actual historical fleet size (again, for 
6 Eftekhar et al. (2014) points out that such a dependence may indicate that the 

emand is censored; unfortunately, as stated earlier, we are not able to see which 

articular observations are censored. It is also possible that, if there is a large num- 

er of projects, some individual tasks can be combined into a single “trip”, leading 

o a slightly smaller number of tasks. 

e

p

v

m

r

c

687 
his particular location/mission type combination). All three tra- 

ectories grow over time, and so the simulation output has the 

ame general trend as historical. However, each individual simu- 

ated scenario deviates quite a bit from the historical trajectory; in 

articular, the number of “active projects” generated in the “high”

cenario is consistently much greater than the historical fleet size. 

his trajectory is useful if we believe that the historical data are 

ignificantly under-reporting the visible demands. Second, Fig. 3 (b) 

xes the process L t to have the same values as the historical data, 

nd uses (7) to randomly generate individual tasks. In other words, 

e are comparing the simulated values of Y � against the historical 

alues. Again, we see that, while the simulation output is not iden- 

ical to the historical data, all of the trajectories follow the same 

eneral trend. Of course, when L t is also simulated, we will expect 

o see greater deviation from historical. 

We close this discussion by reiterating that demand simulation 

ust take two diametrically opposed concerns into consideration. 

n one hand, we want the simulation output to resemble the his- 

orical data, as otherwise the results of policy evaluation may not 

e relevant to LIHO. On the other hand, we also want to encourage 

 certain amount of deviation from historical, both because we do 

ot want to “overfit” our results to the one set of numbers that 

appened to have been observed, and also because the dataset it- 

elf is not completely reliable with respect to the demand. 

.3. Cost models: Depreciation 

From (1) , recall that our resource model tracks the residual 

alue of every vehicle over time. This value serves as a constraint 

n the vehicle’s lifespan: once it reaches zero, the vehicle is au- 

omatically removed from the fleet. Residual value also plays two 

oles in cost modeling. First, it determines our revenue in the event 

hat we sell the vehicle. Second, at the final time T , the residual 

alue of every vehicle remaining in the fleet is subtracted from 

he total cost, to avoid a bias in favour of policies that deliberately 

ake fewer purchases late in the planning period. 

We formulate and estimate a statistical model that can be used 

o calculate changes in residual value as a function of vehicle at- 

ributes and assignment decisions. Essentially, this model serves as 

art of the transition function a M . Specifically, we use the zero- 

ntercept Tobit model 

ep % = β1 Age + 

∑ 

j 

β2 j log ( Odometer ) × MissionType j + β3 NumAcc , 

(8) 

here Dep % is the depreciation expressed as a percentage of the 

riginal purchase price, MissionType j is a dummy variable that is 

qual to 1 if the vehicle is assigned to the jth distinct mission type, 

nd NumAcc is the total number of accidents in the vehicle’s his- 

ory at the time of disposition. The Tobit model is used because the 

IHO dataset contains an inflated number of zeroes (and no neg- 

tive numbers) reported as residual values; we assume that any 

egative value for the right-hand side of (8) indicates that the ve- 

icle has been rendered unusable and can only be salvaged. 

We use the percentage loss rather than the actual residual value 

ecause the initial purchase price of a vehicle depends on factors 

uch as accessories, payload, special design etc., that are not ex- 

licitly captured in (8) . By modeling the loss relative to the orig- 

nal purchase price, we implicitly keep these factors in the esti- 

ated residual value. The age and odometer variables are self- 

xplanatory: both should affect the residual value negatively, or the 

ercentage loss positively. However, the effect of odometer should 

ary with the mission type on which the vehicle operates, as some 

ission types inflict more wear on the vehicle, resulting in lower 

esidual value. We apply a log transformation to the odometer be- 

ause we expect residual values to drop more sharply in the early 
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Fig. 3. Simulated demands compared with historical data. 

Table 2 

Estimation results for the depreciation model (8) . 

Independent variable: 

Depreciation% 

Age 2 . 215 × 10 −3 ∗∗∗

log ( Odometer ) ×Mission2 0.04845 ∗∗∗

log ( Odometer ) ×Mission4 0.05399 ∗∗∗

NumAcc 0.04512 ∗∗∗

Observations 3846 (454 in FC) 

Log Likelihood −56,724.86 

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01 
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Table 3 

Estimation results for the fuel cost/km model (9) . 

Dependent variable: 

Cost per Km 

Odometer 1 . 632 × 10 −7 ∗∗∗

Age 2 . 506 × 10 −4 ∗∗∗

Mission4 0.009759 ∗∗

Constant 0.1292 ∗∗∗

Observations 11,040 

R 2 0.301 

Adjusted R 2 0.293 

Residual Std. Error 0.029 (df = 10917) 

F Statistic 38.486 ∗∗∗ (df = 122; 10917) 

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01 
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tages of a vehicle’s life than in the later stages (an additional 

00 km traveled should have less impact if the vehicle has already 

ccrued 10 0,0 0 0 km). Due to the small number of accidents in the

ata, we assume that the number of accidents has the same linear 

mpact on depreciation across all mission types. 

In (8) , the intercept is set to zero, because a vehicle’s resid- 

al value is initialized to its purchase price (a new vehicle has 

ot yet incurred any depreciation). Note that (8) includes inter- 

ction terms between log ( Odometer ) and the mission types, but 

oes not include either main effect. The main effects for mission 

ypes are not included because (8) is a zero-intercept model (es- 

entially the reasons for omitting the intercept term also apply to 

hese effects). The main effect of log ( Odometer ) is not included 

ecause this would create linear dependence among independent 

ariables; as an alternative, one could omit one value of j from 

8) and include the main effect of log ( Odometer ) instead. Since 

he primary purpose of this model is to generate costs inside the 

imulator, this is not a major issue. 

For maximum accuracy, we used the full 20-country cross- 

ectional data to calibrate our residual value model. Thus, we es- 

imated a version of (8) that contained four-way interactions be- 

ween vehicle odometer, mission type, vehicle type, and country. 

owever, since our simulations focused on FC, most of these terms 

ere not actually used inside the simulator. Table 2 shows the es- 

imation results only for those terms relevant to FC, with two mis- 

ion types (numbered 2 and 4 in the data), a single vehicle type, 

nd a single location. The coefficients for all the regressors are 

ositive and significant; note the heterogeneity between mission 

ypes. 
688 
.4. Cost models: Fuel 

Each data point in the LIHO refueling dataset represents one re- 

ueling for one vehicle. We make the assumption (in the absence 

f any information whatsoever in this regard) that the tank is filled 

n each refueling, and thus the amount of fuel purchased corre- 

ponds to the amount that has been consumed during the distance 

raveled since the previous refueling of that vehicle (which we can 

btain from the monthly odometer data). Then, for each refueling 

ecord, we can calculate the fuel cost per kilometer between two 

efuels of the same vehicle and relate this quantity to the vehicle’s 

ission type, age and odometer at that time. We propose the lin- 

ar model 

uelCostPerKm = β0 + β1 Odometer + β2 Age + 

∑ 

j 

β3 j MissionType j , 

(9) 

ith additional fixed effects for each vehicle ID. To improve esti- 

ation quality, we removed the outliers and only considered data 

ith traveled distance above 300 km. 

Table 3 shows the OLS regression result of the model. We can 

ee that, since all coefficients are significant, there exists a base- 

ine cost of 0.1292 per km traveled, each extra kilometer on the 

dometer adds 1 . 632 × 10 −7 to this cost, each extra year on the 

ge adds 2 . 506 × 10 −4 , and if the vehicle operates on mission type

, an additional 0.009759 is added on the per km cost. Note that, 

ven if the cost/km follows a linear model, the resulting fuel costs 

re not linear in the distance traveled: if the vehicle is new or has 

 low odometer, its fuel efficiency is at a higher level, reflected by 
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Table 4 

Estimation results for the cumulative maintenance/repair 

cost model (10) . 

Dependent variable: 

Cumulative costs 

Age ×Mission2 25.553 ∗∗∗

Age ×Mission4 15.011 ∗∗∗

Odometer ×Mission2 0.014 ∗∗∗

Odometer ×Mission4 0.0083 ∗

Odometer 2 ×Mission2 3 . 21 × 10 −7 ∗∗∗

Odometer 2 ×Mission4 7 . 06 × 10 −7 ∗∗∗

Observations 735 

Log Likelihood − 5,386.827 

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01 
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preciation costs. 
he lower fuel cost per kilometer. The cost incurred for a fixed dis- 

ance increases with the age and utilization of the vehicle. 

.5. Cost models: Repair/maintenance 

In the LIHO data, vehicles do not appear to follow a strict 

chedule of maintenance and repairs. Rather, they appear to re- 

eive several “levels” of maintenance approximately every 50 0 0, 

5 , 0 0 0 and 50 , 0 0 0 km, but also other services at seemingly un-

ystematic times and odometer readings. From this, we conjecture 

hat field managers do schedule maintenance and repairs based 

n age and odometer, but that any such schedule is only followed 

oughly. We formulate the linear model 

C = 

∑ 

j 

β1 j Age × MissionType j + β2 j Odometer × MissionType j 

+ β3 j Odometer 
2 × MissionType j , (10) 

here CC is the cumulative maintenance/repair costs of one 

ehicle that were incurred since it entered the fleet. We use a 

ero-intercept model since the cumulative cost for a brand-new 

ehicle should equal zero; for the same reason, we do not include 

ain effects for the various mission types. We also do not include 

ain effects for age and odometer, but (10) is equivalent to the 

odel where one mission type is removed and the main effects 

re included. We include the nonlinear term Odometer 2 since we 

xpect that the vehicle will receive more repairs as it is utilized 

ore. Interaction terms between age/odometer and mission types 

re included because vehicles operating on different mission types 

ay have different maintenance schedules, and more strenuous 

issions may require more repairs. Although accidents are not 

xplicitly included in (10) , the model can be viewed as indirectly 

ncorporating costs due to accidents in an average sense since 

epair costs are present in the data. 

The LIHO dataset only provides maintenance data for 39 vehi- 

les in FC, and testing with a mixed linear model suggests that the 

evel of between-group variability is sufficient to warrant the in- 

lusion of a random effect representing vehicle ID. The estimation 

esults are shown in Table 4 . We can see that the coefficients of the

uadratic terms are positive and significant, indicating that main- 

enance/repair costs do indeed grow more quickly as the odometer 

ncreases. 

.6. Generation of accidents 

In Section 3.3 , we estimated the impact of accidents on the 

esidual value of a vehicle. In order to include accidents in our sim- 

lations, we also require a probabilistic model of how likely they 

re to occur in a single decision epoch. Unfortunately, our data 

re not sufficient to estimate such a model; for the one location 

nd two mission types considered in Section 3.3 , we have records 
689 
f only 12 accidents. For this reason, we constructed an artificial 

odel in which the accident occurrence probability is linearly re- 

ated to a vehicle’s age and odometer. The coefficients of this linear 

odel can be viewed as tunable parameters, and we chose them so 

hat the total numbers of accidents in our simulations resembled 

hose in the data (we refer to this as the “base case”). In addition, 

e tested other parameter values with 2x and 4x the base accident 

robability, and in the Appendix we also perform additional sensi- 

ivity analysis on accident severity. We also ran a version of this 

odel in which the accident probability was flat (did not increase 

ith age and odometer), but the results were not substantially dif- 

erent. 

. Analysis, results and insights 

We present a case study calibrated to the LIHO data. Recall from 

ection 3 that, due to the specifics of the LIHO data, we focus on a

ingle location with mission types 2 and 4. The various policies 

hat were compared are described in Section 4.1 . The first case 

onsidered in Section 4.2 focuses on sales and assignment poli- 

ies under stable (stationary) demand. Section 4.3 considers realis- 

ic demand (in the sense discussed in Section 3.2 ) and introduces 

urchase policies. Section 4.4 investigates the impact of allowing 

ehicles to change their assigned mission type (a practice not cur- 

ently implemented by LIHO). An additional case, focusing on cen- 

ralized procurement, is deferred to the Appendix. 

.1. Description of policies 

Recall from Section 2.2 that a policy provides a way to calculate 

 decision when given any system state. Thus, to run the simulator, 

he user must choose policies for purchasing, assigning, and selling 

ehicles. We consider a number of simple and intuitive choices for 

ach of these categories. 

Purchase policies . The simplest purchase policy is pure replace- 

ent , where we purchase a new vehicle only when an existing 

ehicle is removed from the fleet (either sold, or disposed after 

eaching zero residual value). Under this policy, the fleet size is 

onstant. We mainly consider this policy in Section 4.2 , where de- 

and is assumed to be stationary. 

We also consider simple “reactive” policies that purchase new 

ehicles when the recent mission completion rate appears to be 

low” (i.e., falls below some tunable threshold) or when the uti- 

ization of the existing fleet appears to be “high’’. In most cases, 

e assume that new vehicles join the fleet instantaneously upon 

equest; however, in the Appendix, we investigate the issue of lead 

ime. 

Assignment policies . We assume that managers cannot antici- 

ate the arrival of new missions and must assign them to vehicles 

n the order in which they appear (are generated by the simulator). 

he following simple assignment rules are considered: 

• Balance . This rule assigns an incoming mission to the vehicle 

that currently (based on previously assigned missions) has the 

least traveling distance assigned to it for the month. Essentially, 

this rule attempts to balance the monthly load on the fleet. 
• Least/Most Odometer . An incoming mission is assigned to the 

vehicle with the least/most mileage on the odometer. 
• Oldest/Newest . An incoming mission is assigned to the vehicle 

with the largest/smallest age attribute. 
• Myopic . Assigns an incoming mission to a vehicle to minimize 

the immediate cost of the assignment (i.e., assigning the mis- 

sion to this vehicle incurs less cost than assigning it to any 

other vehicle), calculated by adding fuel, maintenance, and de- 
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Fig. 4. Cost comparison of sales policies under demand levels 1–5. 
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7 We also considered thresholds based on only age (e.g., 40 mos., 60 mos. etc) or 

only odometer. The results for odometer-based policies were very similar to what 

is shown here; the best-performing threshold was 300k and, for higher demand, 

225k. Performance was slightly more sensitive to age, with the best choice starting 

at 140 mos. at demand level 1 and reducing to 60 at level 5. We did not observe 

any scenario in which it was optimal to sell before LIHO’s threshold. 
Among these, Balance and Least Odometer can be viewed as 

orkload-balancing rules, which have been widely studied in com- 

ercial transportation ( Matl et al., 2017 ). The Balance policy at- 

empts to evenly divide the monthly load on the fleet, whereas 

east Odometer attempts to balance total odometers. The Newest 

olicy is inspired by tendencies observed in practice ( Pedraza- 

artinez & Van Wassenhove, 2013 ). 

We impose a limit on the number of missions that can be 

ssigned to a single vehicle. First, we calculate the maximum 

onthly traveling distance of any vehicle in the LIHO data, and 

ivide this quantity by 30 to obtain a cap on daily traveling dis- 

ance (approximately 120 km). The “travel distance” attribute of 

ach generated mission (the value X n in (7) ) can be divided by this

aily cap to obtain the number of days required by the mission. 

 vehicle cannot take more than 30 days’ worth of missions; if it 

s unable to receive any more assignments, the next best matching 

ehicle (depending on the assignment policy) is used. If no vehi- 

les are eligible to receive the next incoming mission, it is simply 

ropped (not completed). 

Sales policies . LIHO recommends selling a vehicle once it has 

eached 60 months in age or 150,0 0 0 km of odometer, whichever 

omes first. We consider other combinations of these thresh- 

lds, such as 40 mos./10 0,0 0 0 km (40/10 0), 10 0 mos./225,0 0 0 km

10 0/225), 140 mos./30 0,0 0 0 km (140/30 0), as well as the option to

un the vehicle into the ground (RIG), which means that we con- 

inue to exploit it until it reaches zero value and is automatically 

emoved from the fleet. 

It can be seen that most of these policies are based on thresh- 

lds of various state attributes (such as age and odometer), or 

uantities derived from these (such as utilization). We adopt this 

pproach because it is simple and practicable, and would easily ap- 

eal to a field manager. Indeed, in the case of sales policies, our 

efinitions are motivated by current practice. 

.2. Case 1: Stable demand, sales/assignment policies 

In this case, we assume that demand is stationary: the process 

 

L t ) in (7) is set to a constant, but the Tweedie distribution (cal- 

brated using real data; see the Appendix for the exact parameter 

alues) is still used to randomly generate individual tasks. A pure 

eplacement policy is used to procure new vehicles, thus keeping 

he fleet size constant. 

We consider a time horizon of 200 months. The initial fleet 

onsists of four vehicles, of which two are new while the other 

wo record 20 mos./30,0 0 0 km and 40 mos./60,0 0 0 km on age and

dometer, respectively. All vehicles are assumed to have been ini- 

ially purchased for $30,0 0 0, which is also used as the fixed pur- 

hase price of all new vehicles. Five levels of stationary demand 

ere considered by setting L t ≡ i for i ∈ { 1 , 2 , 3 , 4 , 5 } . For levels 

 and 2, the demand is lower than the fleet capacity, meaning 

hat the vehicles will tend to be under-utilized. Levels 3 and 4 are 

oughly equal to the fleet capacity (level 3 is slightly lower, but can 

ccasionally generate high loads), and level 5 is above the fleet ca- 

acity, meaning that the fleet will not be able to complete all the 

issions. 

We run every sales policy together with every possible assign- 

ent policy. The estimated performance (6) of a sales policy is 

eported using the best-performing assignment policy. We found 

hat, for any fixed demand level, there was very little variation in 

ompletion rates between policies. Completion rates were close to 

 for demand levels 1–4, and around 77% for demand level 5. For 

his reason, we use total cost as the primary performance metric 

n this case. 

Fig. 4 shows the results of the comparison with accidents not 

ncluded (i.e., accident probability was set to zero). We conducted 

ufficiently many simulation runs to obtain statistically significant 
690 
ifferences between policies. When demand is very low, the best 

erformance is achieved by the RIG policy, which never sells vehi- 

les; however, as the demand increases, the 140/300 policy starts 

o perform better (levels 2–3), and at levels 4–5, 100/225 becomes 

he best. Thus, 1) the optimal sales threshold is always later/higher 

han the one recommended by LIHO, and 2) the optimal threshold 

oves earlier/lower as the demand increases. 

The first observation dovetails with the historical practice of 

IHO field managers, who generally continued to exploit vehicles 

fter the 60/150 threshold. We saw this in our data, where over 

0% of dispositions occurred after at least one of these thresh- 

lds (with ages reaching 250 months and odometers exceeding 

80,0 0 0 km), and of the remaining 30% many were listed as having 

ero age, suggesting that they were not sold but transferred else- 

here in the HO. Our interviewees agreed that the 60/150 rule was 

arely followed, and similar observations were made by Pedraza- 

artinez & Van Wassenhove (2013) in an empirical study. 

This behaviour can be explained in terms of the tradeoff be- 

ween utilization and residual value, first highlighted by Eftekhar 

 Van Wassenhove (2016) in the humanitarian context. Costs re- 

ated to vehicle value (purchase and depreciation) are mostly in- 

urred early on in the vehicle’s lifetime; on the other hand, op- 

rational costs (fuel, maintenance and repair) become steeper late 

n the vehicle’s lifetime. When the demand is low, value-related 

osts account for a greater share of the total cost and thus we 

refer to continue exploiting the fleet rather than making new 

urchases. When the demand is high, the fleet is exploited more 

eavily and it becomes better to avoid keeping vehicles with high 

ge/odometer in the fleet. Even then, however, the optimal tradeoff

s made after LIHO’s recommended threshold. 7 

Next, we examine both sales and assignment policies and bring 

ccidents into the picture. Table 5 reports optimal sales/assignment 

olicy combinations for all demand levels and accident frequen- 

ies. With regard to sales, the pattern is virtually identical to what 

e saw in Fig. 4 : RIG and/or 140/300 are optimal for low demand
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Table 5 

Cost comparison of sales/assignment policies with varying levels of accidents. 

Accident Level Demand Level Sales Assignment Total cost Avg. no. of accidents 

0 1 RIG Myopic 151,519 0 

2 140/300 Myopic 286,123 0 

3 140/300 Least Odometer 460,906 0 

4 100/225 Newest 721,593 0 

5 100/225 Balance 854,286 0 

Baseline 1 RIG Myopic 162,034 1.433 

2 140/300 Myopic 289,548 2.672 

3 140/300 Least Odometer 466,112 3.979 

4 100/225 Newest 728,315 4.967 

5 100/225 Balance 862,691 6.202 

2x Baseline 1 140/300 Myopic 163,841 2.182 

2 140/300 Myopic 292,427 5.437 

3 140/300 Least Odometer 470,577 7.908 

4 100/225 Newest 734,835 9.804 

5 100/225 Balance 871,176 12.410 

4x Baseline 1 RIG Myopic 166,533 4.813 

2 140/300 Myopic 298,577 10.699 

3 140/300 Least Odometer 479,387 15.088 

4 100/225 Newest 747,526 19.514 

5 100/225 Balance 889,165 24.729 
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evels, followed by 100/225 as the demand increases. This holds for 

ll accident frequencies. 

Assignment policies exhibit the following pattern across all ac- 

ident levels: for low demand levels Myopic is always preferable, 

hereas Least Odometer/Newest are the best choices for medium 

emand levels, and Balance is the best for very high demand. 

hen the demand is low, Myopic essentially concentrates the de- 

and on a portion of the fleet, exploiting those vehicles very heav- 

ly while leaving the others idle. This is optimal in low-demand 

ettings because residual value is the most important cost driver. 

s the demand increases, it becomes necessary to use all the ve- 

icles to complete the missions, and so workload-balancing rules 8 

tart to perform better as they essentially control the growth of 

aintenance costs across the fleet, while also making vehicles 

each the sales threshold later. For very high demand, all assign- 

ent policies become very similar as all the vehicles are fully uti- 

ized and have very similar monthly mileages; however, the Bal- 

nce policy has a slight edge since, when the fleet is running at 

lose to full capacity, only small missions can be “squeezed into”

he loads, and the Balance policy will tend to assign more of these 

issions. 

If cost is the main performance criterion, it appears that the 

resence of accidents in the simulator does not substantially 

hange our conclusions regarding sales and assignment policies. 

or this reason, accidents are mostly omitted from the remain- 

er of our study. If the field manager is concerned with issues 

ther than cost (for example, personnel safety), reducing the sales 

hreshold will mitigate the risk of accident somewhat (the number 

f accidents grows with demand, but switching from 140/300 to 

00/225 slows the growth), but does not eliminate it entirely. 

.3. Case 2: Realistic demand, assignment/purchase policies 

We now consider nonstationary demand, based on the model in 

ection 3.2 calibrated to 143 months of historical data for mission 

ype 2 at a single local office. We focus on the “high” demand tra- 

ectory shown in Fig. 3 , which demonstrates the same rising trend 
8 Under demand level 4, the Newest rule essentially balances the residual value 

f the fleet since vehicles with higher residual value tend to have higher utilization. 

he Least Odometer rule also performs very similarly to Newest at this demand 

evel. 

r
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w

691 
s in the historical data, but represents a hypothetical situation 

here the data under-reported the actual demands. 

Our dataset tells us when new vehicles were purchased histor- 

cally; however, because the historical fleet size was also used to 

alibrate the demand process in Section 3.2 , the historical purchase 

chedule will tend to appear as if it is ordering too many vehicles 

elative to the simulated demand. For a more informative compar- 

son, we construct two reactive purchase policies. The first policy 

urchases a new vehicle when the average mission completion rate 

ver the past three months dips below a tunable threshold α (we 

abel this policy “COMP” for “completion”), while the second policy 

urchases a new vehicle when the average vehicle utilization over 

he past three months, calculated as the number of days needed to 

omplete all missions divided by the total vehicle-day units in the 

eet, is above a tunable threshold β (we label this policy “UTIL”

or “utilization”). Thus, high α and low β lead to more purchases, 

hile low α and high β lead to fewer. 

Fig. 5 shows the costs and completion rates, in the high- 

emand scenario, for different assignment/sales combinations to- 

ether with each of the two reactive policies. The Pareto fronts in 

ach subplot are highlighted in red. For the COMP policy, out of 

6 points on the Pareto front, 64 use the Balance assignment pol- 

cy and 32 use the 100/225 sales policy (all other Pareto-optimal 

ales policies are 140/300 and RIG). The Pareto-optimal points are 

early equidistant and monotonic in α, suggesting that the man- 

ger could easily use α as the “knob” for achieving a desired trade- 

ff between cost and completion rate. Including accidents in the 

odel did not substantially change the shape or composition of 

he Pareto front in Fig. 5 (a), but only moved it upward; for this 

eason, accidents are omitted from this discussion. For the UTIL 

olicy, more points are concentrated on the right as most of the 

ow β values produce very high completion rates. There are 31 

areto points, of which 23 use the Least Odometer assignment pol- 

cy, while 12 and 16, respectively, use the 140/300 and RIG sales 

olicies. 

Overall, COMP has a higher preference for Balance and 100/225, 

hile UTIL leans toward Least Odometer and 140/300 or RIG. These 

esults are consistent with the relationship between the demand 

evel and the optimal assignment/sales combinations that we ob- 

erved in Section 4.2 . Under COMP, purchase decisions lag behind 

he demand to some extent, and so this scenario is closer to the 

igh-demand scenario in Section 4.2 , where Balance and 100/225 

ere indeed optimal. On the other hand, UTIL acts “preventively”
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Fig. 5. Cost and completion rate comparison of reactive purchase policies under high demand. 
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9 We also considered other ways of choosing the vehicle to be switched (for ex- 

ample, based on least or most odometer), but this did not substantially change the 

conclusions. 
hen the load on the fleet appears to be growing. As a result, the 

eet size is more closely matched to the demand, producing re- 

ults that resemble medium-demand levels in Section 4.2 , where 

east Odometer and 140/300 were preferable. Despite this distinc- 

ion, the Pareto points for COMP and UTIL achieve similar costs un- 

er the same completion rate, though COMP provides more flexi- 

ility for trading off the two objectives. 

.4. Case 3: Switching of mission types 

Current practice at LIHO locks in a single mission type for every 

ew vehicle, and no vehicle is ever observed to complete missions 

rom two different types. However, it is possible for a particular 

ehicle type to be feasible for multiple mission types: in the data, 

e frequently see different vehicles of the same type serving dif- 

erent mission types. It is natural to ask whether any improvement 

n efficiency can be achieved by allowing “switching” of mission 

ypes, or reassignment of vehicles from one type to another. Intu- 

tively, allowing switching can help to use existing vehicles more 

fficiently without having to purchase new ones, which would re- 

uce the cost of purchasing new vehicles and then incurring mas- 

ive depreciation in the early stages of their lifespan. Since the data 

rom FC include one vehicle type that is allowed to operate on two 

ission types, we can use our simulator to evaluate the effective- 

ess of switching. 

We first consider an artificial, but illustrative scenario where 

witching might be expected to do well. The initial fleet compo- 

ition is the same as in Section 4.2 , but the underlying demand 

evels (trajectories of L t ) are now two sine functions rounded to 

he nearest integer (see Fig. 6 (a)). Since switching should be most 

seful when the demand is high for one mission type and low for 

he other, one of the sine functions is lagged by half of its period,

ausing the two demand levels to be completely off-sync. There is 

till stochasticity in the demands; the distributions of ( X n ) are cal- 

brated using data for the two mission types. 

The switching policy works as follows. Every month, a switch- 

ng decision is made based on the 3-month average mission com- 

letion rates and vehicle utilizations for both mission types: if the 

verage completion rate for type 2 is 100% , the average comple- 

ion rate of type 4 is below 100% , and the utilization for vehicles

urrently operating on type 2 is under 70% (i.e., we have vehicles 

o spare), the oldest vehicle that operates on type 2 is switched to 
692 
ype 4. 9 Similar criteria are used to switch from type 4 to type 2. If

o switching occurs either way, a purchase decision is then made 

sing the COMP logic. To obtain depreciation due to switching, we 

ompute (8) for a hypothetical vehicle that has been running on 

he new mission type, and has also been given the same distance 

o travel; we then take the difference in the estimated residual val- 

es to get the monthly reduction after switching, thus bypassing 

ll previous mission type history. 

Figs. 6 (b)–(d) show the performance of different assign- 

ent/sales combinations under the switching policy described 

bove, compared to applying the COMP policy independently to 

oth mission types without switching. To avoid clutter, only the 

areto-optimal combinations are reported in Fig. 6 . We can observe 

hat, for the most part, switching seems to offer very little benefit. 

he most improvement that we see is in Fig. 6 (c), where switching 

an achieve about a 3% reduction in cost with the same completion 

ate. We repeated the same experiment with‘ the purchase price 

ncreased to 40,0 0 0 (from 30,0 0 0), the idea being that higher pur-

hase prices should lead to greater savings in value-related cost. 

urprisingly, however, we found that this scenario did not yield 

ny advantage for the switching policy; on the contrary, the advan- 

age observed in Fig. 6 (c) disappeared. Essentially, this happened 

ecause, when the purchase cost is increased, the RIG policy be- 

omes optimal in the nonswitching case. In other words, instead 

f switching vehicles, it is more efficient to just run them longer 

nder their assigned mission type. 

Next, we considered a scenario where the demand levels for 

oth mission types were calibrated using LIHO data (with the 

odel of Section 3.2 ). Fig. 7 (a) shows the trajectory of ( L t ) for 

ach of the two mission types; we see that type 2 generates heavy 

emand in the first half of the planning period, then gradually 

amps down, while type 4 steadily ramps up over the course of 

43 months. Potentially, one might expect switching to offer some 

enefit when the two demand levels cross, since we could then 

witch some vehicles from type 2 to type 4. However, the Pareto 

ronts in Fig. 7 (b) show that this is not at all the case: any savings

btained from switching are vanishingly small. 

To obtain further insight into this surprising lack of improve- 

ent, we closely analyzed two Pareto-optimal policies with very 

imilar completion rates: one policy used switching, the Balance 
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Fig. 6. Demand levels and performance in switching vs. nonswitching with off-sync demands. 

Fig. 7. Comparison of switching vs. non-switching under historical demand. 
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ssignment policy, 140/300 sales, and α = 0 . 99 , while the other 

olicy used the Least Odometer assignment policy, 140/300 sales, 

= 0 . 99 and no switching. Fig. 8 (a) shows how total costs for both

olicies grow over the course of the planning period. Each cost 

rajectory is decomposed into value-related cost (purchase, depre- 

iation) and operational cost (fuel, repair). Early on, both types of 
693 
osts grow quite similarly for both policies (note that, as expected, 

alue-related costs account for a greater share of the total earlier 

n). The savings from switching are seen from month 80 onwards 

n the value-related cost, reflecting the fact that some purchases 

ave been avoided entirely by using switching. At the same time, 

witching has incurred a correspondingly greater operational cost, 
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Fig. 8. Comparison of switching vs. non-switching under historical demand. 
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eflecting the fact that existing vehicles are being exploited more 

eavily; as a result, the savings have been essentially negated. In 

ome very specific cases, it may be possible to achieve (small) to- 

al savings by switching (as we saw in Fig. 6 (c)), but in general

here is no significant improvement. We believe that this offers a 

ompelling explanation for what is typically practiced at LIHO. 

It is worth noting that switching may have an extra benefit in 

erms of fleet size. Fig. 8 (b) shows the fleet size over time for the

wo cases analyzed in the initial setting (the dip around month 100 

ccurs due to the 100 / 225 sales policy). It can be observed that the

witching policy consistently keeps the total fleet size (both types 

ombined) well below that of the non-switching policy. While this 

oes not translate to big savings in the cost of operating the fleet, 

t may have other benefits such as requiring less storage space, 

maller maintenance crews, and so on. 

. Conclusion 

We have presented a holistic simulation environment for coun- 

erfactual analysis of purchase, assignment, and disposition of het- 

rogeneous vehicles in humanitarian fleet management. In the 

ontext of the LIHO data, we used the simulator to obtain the fol- 

owing practical insights: 

1. If cost is the primary objective, it is better to exploit vehi- 

cles longer than recommended by LIHO headquarters. The sales 

threshold should be reduced when the demand is higher, but 

there is no scenario in which the 60/150 threshold is cost- 

optimal. 

2. When demand is low, it is better to assign it to a portion of 

the vehicles while leaving the others idle. For high demand, the 

best assignment policies are those that attempt to balance the 

load in some way. 

3. Switching vehicles between mission types has marginal bene- 

fits at best: although they are used more efficiently, the cost 

savings are largely nullified by the accompanying increase in 

operational costs. 

While these findings are valuable for LIHO and similar organi- 

ations, the simulation-based approach presented in this paper is 

ore broadly useful, since it enables us to jointly study research 

uestions that previously had only been studied independently us- 

ng various mutually incompatible models. In certain cases, we can 

dentify the rationale behind “the facts on the ground”, leading to 

 more productive dialogue between researchers and practitioners. 
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The main limitation of our work is the scarcity of data in the 

umanitarian sector. Although our model can accommodate a wide 

ariety of fleet attributes, our implementation is by necessity lim- 

ted to those covered by the LIHO data. Thus, we did not have data 

bout individual missions or deliveries, nor did we have access to 

ehicle maintenance histories or inventories of spare parts. If such 

ata become available, they may be used to elaborate further on 

he results presented here. 

At a higher level, some of the findings in this paper chal- 

enge our current understanding of optimal decision-making in the 

eld. We find that, in many complex situations, field managers 

re making effective decisions without in-depth analysis, perhaps 

ven without a clear understanding of how the result was obtained 

 Tazelaar & Snijders, 2013 ), as may occur in “naturalistic decision 

aking” A promising avenue for future work is to adopt methods 

f behavioral operations management to control for the element of 

ntuition in complex humanitarian operations settings. 

ppendix A. Additional results for FC 

Section A.1 presents one additional case using the FC data. The 

ocus of this case is on centralized vs. decentralized vehicle pro- 

urement. Section A.2 presents additional sensitivity analysis on 

he severity of accidents (i.e., the magnitude of their effect on 

esidual value). 

1. Centralized purchases with lead times (FC) 

Previously, we assumed that new vehicles join the fleet as soon 

s they are ordered. In practice, this corresponds to a situation 

here field managers purchase new vehicles from the local mar- 

et. However, it often happens that managers have the additional 

ption to purchase vehicles through headquarters, in which case 

here may be a lead time, perhaps as long as six months, be- 

ore the vehicle will become available. This is known as a “cen- 

ralized procurement model”, discussed in detail by Eftekhar et al. 

2014) and Kunz & Van Wassenhove (2019) . Under such a model, 

he HO has a long-term contract with the manufacturer, providing 

 discount that typically does not depend on the purchase quan- 

ity. As a consequence, purchasing locally can be 50% more expen- 

ive than purchasing through the HQ ( Besiou, Pedraza-Martinez, 

 Van Wassenhove, 2014 ), creating a dilemma for fleet managers, 

ho generally do not have sufficient bargaining power to obtain 

iscounts on the local market. 
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Table 6 

Comparison of costs between purchasing locally and ordering predictively 

for stable demand. 

Demand level Purchase locally Order predictively 

10% 30% 50% 

1 165,519 177,519 189,519 158,339 

2 298,123 320,331 336,855 285,701 

3 472,906 496,906 520,906 460,403 

4 739,328 763,328 787,328 720,886 

5 879,084 928,680 978,276 848,291 
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Fig. 9. Comparison of centralized and decentralized purchases. 
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Let us return to the setting of stable demand from Section 4.2 . 

onsider a hypothetical situation where the manager has some 

artial knowledge of demand in the near future: specifically, the 

anager knows the underlying value of L t , but not the random 

umber of tasks generated from L t or their random magnitudes. 

The manager does know the distributional parameters of these 

andom variables, as these can be estimated from data.) Using this 

nformation, the manager can make a crude forecast of the next 

ime that a vehicle in the current fleet will reach zero residual 

alue; if this is predicted to occur within the next six months, the 

anager orders a new vehicle for $30 , 0 0 0 . We then simulate all

ossible sales/assignment policy combinations together with this 

ethod of purchasing, and report the lowest cost achieved for five 

emand levels. Likewise, we simulate all possible sales/assignment 

olicies for three settings where the manager can instantly obtain 

ew vehicles with a cost markup of 10%, 30% and 50%, respectively. 

Table 6 reports the results of the comparison; since comple- 

ion rates were similar under all of the purchasing schemes, we 

ocus on cost. Since the manager does not have perfect knowledge 

f the future, the savings obtained from centralized purchases are 

artially offset by increased utilization costs (since there may now 

e times when the remaining vehicles in the fleet are forced to 

ake on more missions while waiting for a new vehicle to arrive). 

onetheless, there is a clear net gain from centralized purchases 

ven when the markup is small. In the more realistic situation 

here the markup is 50%, we typically observe savings of around 

0% relative to the decentralized scheme. 

We also conducted a similar comparison for the realistic de- 

ands in Section 4.3 in the case of 50% markup. Here, in order for

he two schemes to produce comparable completion rates, the de- 

entralized setting uses the COMP policy ( α = 0 . 8 , 0 . 81 , . . . , 0 . 99 ).

n the centralized setting, the purchase policy anticipates future 

ncreases in demand (again, we assume that the fleet manager 

nows the trajectory of L t ) by keeping the fleet size at a higher

evel than what may be needed at the moment. Since UTIL also 

ims to preventively increase the fleet size, we use it as the pur- 

hase policy ( β = 0 . 6 , 0 . 61 , . . . , 0 . 99 ). The resulting Pareto fronts

or both schemes are shown in Fig. 9 , and a fair comparison can be

ade by looking at the cost figures under a fixed completion rate. 

gain, centralized purchases result in substantial savings (about 

5%). 

2. Sensitivity analysis of accident severity 

We revisit Case 1 in Section 4.2 and provide some additional 

esults to complement Table 5 , in which the effect of frequency of 

ccidents on total cost was examined. Here, we use the baseline 

ccident frequency, but vary the severity of accidents. In this con- 

ext, “severity” refers to the coefficient of the variable NumAcc in 

able 2 . We consider two scenarios in which this number is cut 

n half and doubled, respectively, relative to its original estimated 

alue. One can think of these scenarios as being optimistic and 

essimistic estimates for “light” and “severe” accidents. 
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The results are shown in Table 7 . They are largely the same as 

hose in Table 5 , with the same best-performing sales/assignment 

ombination for each demand level. It is interesting to note that, in 

ome cases, increasing the severity may actually result in a slightly 

maller average number of accidents. This occurs because more se- 

ere accidents cause vehicles to be replaced sooner, and new vehi- 

les are slightly less likely to suffer accidents. 

ppendix B. Simulation results for Country 2 

In this section, we investigate the generalizability of our results 

y recalibrating our models from Sections 3.2 –3.5 on data from a 

econd developing country (“Country 2” or C2) where sufficiently 

ood fuel, repair, and maintenance data were available. The fleet 

n C2 consists of 235 vehicles total and contains multiple vehicle 

ypes, with the most data available for types 2 and 3; Type 3 is 

he same vehicle type used in our analysis of FC (strong trans- 

orter, e.g., Land Cruiser or Pajero), while Type 2 represents light 

ans/minibuses. Thus, we are able to perform a double robustness 

heck: first, we can run new simulations for C2, and second, we 

an also test whether our conclusions continue to hold on Type 2 

ehicles. Unfortunately, C2 does not have enough data to allow de- 

ailed demand estimation for more than one mission type (namely 

ype 2), so we do not study mission type switching (Case 3) in this 

iscussion. However, Cases 1 and 2, as well as the additional case 

n Section A.1 , can all be considered. 

1. Estimation results for cost models 

Since the depreciation model from Section 3.3 was estimated 

sing data from 20 countries, we simply report those coefficients 

hat are relevant to C2. The cross-sectional data for C2 contains 4 

ission types and 4 vehicle types, so the model is 

ep % = β1 Age + 

∑ 

i, j 

β2 i j log ( Odometer ) × MissionType i 

× VehicleType j + β3 NumAcc , (B.1) 

nd the results are summarized in Table 8 . Note that the co- 

fficients for age and number of accidents are the same as in 

ection 3.3 , since only a single estimation was performed on the 

ull dataset. However, there is significant heterogeneity in the im- 

act of odometer depending on the vehicle and mission type in- 

olved. 

Next, we estimate the fuel cost model using C2 data. We use 

he same model as in Section 3.4 , but add dummy variables rep- 

esenting vehicle types since our previous analysis focused on a 
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Table 7 

Cost comparison of sales/assignment policies with varying accident severity. 

Accident Severity Demand Level Sales Assignment Total cost Avg. no. of accidents 

0.5x Baseline 1 RIG Myopic 160,413 1.437 

2 140/300 Myopic 287,947 2.700 

3 140/300 Least Odometer 463,557 3.922 

4 100/225 Newest 724,938 4.942 

5 100/225 Balance 858,525 6.262 

2x Baseline 1 RIG Myopic 163,315 1.334 

2 140/300 Myopic 292,630 2.760 

3 140/300 Least Odometer 469,942 3.862 

4 100/225 Newest 734,846 5.008 

5 100/225 Balance 871,490 6.172 

Table 8 

Residual value estimation results for C2. 

Dependent variable: 

Depreciation Percentage 

Age 2 . 215 × 10 −3 ∗∗∗

NumAcc 0.04512 ∗∗∗

log (Odometer) × Mission1 × VehicleType4 0.0355 ∗∗∗

log (Odometer) × Mission2 × VehicleType1 0.0021 ∗∗∗

log (Odometer) × Mission2 × VehicleType2 0.0405 ∗∗∗

log (Odometer) × Mission2 × VehicleType3 0.0232 ∗∗∗

log (Odometer) × Mission3 × VehicleType4 0.0333 ∗∗∗

log (Odometer) × Mission4 × VehicleType1 0.0303 ∗∗∗

log (Odometer) × Mission4 × VehicleType2 0.0520 ∗∗∗

log (Odometer) × Mission4 × VehicleType3 0.0489 ∗∗∗

Observations 3846 (235 in C2) 

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01 

Table 9 

Fuel cost estimation results for C2. 

Dependent variable: 

Cost per Km 

Odometer 3 . 194 × 10 −8 ∗

Age 5 . 930 × 10 −5 ∗

Mission2 -0.1284 ∗∗∗

Mission4 -0.1268 ∗∗∗

VehicleType2 0.0084 ∗

VehicleType3 0.0529 ∗∗∗

Constant 0.1955 ∗∗∗

Observations 4747 

R 2 0.5507 

Adjusted R 2 0.5428 

Residual Std. Error 0.03132 (df = 4663) 

F Statistic 68.87 ∗∗∗ (df = 83; 4663) 

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01 
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Table 10 

Maintenance/repair cost estimation results for C2. 

Dependent variable: 

CumuCost 

Age 34.638 ∗∗∗

Odometer 0.021 ∗∗∗

Odometer 2 1.165 ×10 −7 ∗∗∗

Observations 520 

Log Likelihood −4,074.901 

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01 

Fig. 10. Cost comparison of sales policies under demand levels 1–5. 
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ingle type. The model thus becomes 

uelCostPerKm = β0 + β1 Odometer + β2 Age 

+ 

∑ 

j 

β3 j MissionType j + 

∑ 

k 

β4 k VehicleType k . 

able 9 shows the results. As before, age and odometer are posi- 

ively correlated with fuel cost. 

Next, we estimate the maintenance cost model. We found 

hat vehicle types do not appear to have a significant correla- 

ion with maintenance/repair costs. Therefore, we assume that ve- 

icles working on the same mission type follow similar mainte- 

ance/repair schedules, and the model remains unchanged from 

ection 3.5 : 

C = 

∑ 

j 

β1 j Age × MissionType j + β2 j Odometer × MissionType j 

+ β3 j Odometer 
2 × MissionType j . 
696 
he results are shown in Table 10 . Since C2 only has enough data

n mission type 2, the MissionType component of the interaction 

erms is omitted; we see, however, that the coefficients are overall 

imilar to what we saw in Section 3.5 , with the main difference be-

ng that the nonlinear effect of odometer is less pronounced. Thus, 

f enough data can be gathered to perform estimation reliably, one 

an recalibrate the cost module of the simulator. If, additionally, 

onthly mileage data are available, one can calibrate the demand 

odule and repeat the analysis of Section 4 . 

2. Simulation results for C2, vehicle type 2 

We repeated three cases from our study of FC on the C2 data 

ith mission type 2 and vehicle type 2. First, let us consider Case 

 (comparison of sales policies), in which the demand is stable, 

nd five demand levels are considered with an initial fleet size of 

our vehicles. In other words, the experimental setup is the same, 

ut costs are now calculated according to the C2 models. First, we 

ummarize the results of the base case (no accidents) in Fig. 10 . 

he overall pattern is similar to what we observed in the FC study, 
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Table 11 

Comparison between different levels of accidents. 

Accident Level Demand Level Policies Cost NumOfAccidents 

0 1 Myopic, RIG 118,217 0 

2 Myopic, RIG 204,220 0 

3 Least Odometer, RIG 307,332 0 

4 Balance, 140/300 449,596 0 

5 Balance, 100/225 550,307 0 

Baseline 1 Most Odometer, RIG 126,206 1.81 

2 Myopic, RIG 211,178 4.13 

3 Least Odometer, RIG 324,512 5.76 

4 Balance, 140/300 459,015 6.97 

5 Balance, 100/225 558,606 6.13 

2x Baseline 1 Oldest, RIG 131,178 3.68 

2 Myopic, RIG 219,344 7.62 

3 Least Odometer, 140/300 332,864 7.95 

4 Balance, 140/300 468,697 14.11 

5 Balance, 100/225 567,274 12.53 

4x Baseline 1 Most Odometer, RIG 140,256 6.98 

2 Myopic, 140/300 226,891 11.32 

3 Least Odometer, 140/300 342,903 15.63 

4 Least Odometer, 140/300 488,761 27.19 

5 Balance, 100/225 583,912 24.77 

Table 12 

Cost comparison with varying accident severity. 

Accident Severity Demand Level Policies Total cost Avg. no. of accidents 

0.5x Baseline 1 Most Odometer, RIG 123,922 1.800 

2 Myopic, RIG 208,553 4.253 

3 Least Odometer, RIG 321,128 6.354 

4 Balance, 140/300 454,285 6.928 

5 Balance, 100/225 554,513 6.214 

2x Baseline 1 Most Odometer, RIG 131,274 1.772 

2 Myopic, RIG 217,887 3.847 

3 Least Odometer, RIG 331,648 5.003 

4 Balance, 140/300 468,985 6.963 

5 Balance, 100/225 566,888 6.110 
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Table 13 

Comparison of costs between purchasing locally and ordering predictively 

for stable demand. 

Demand level Purchase locally Order predictively 

10% 30% 50% 

1 121,217 127,217 133,217 117,517 

2 208,717 213,554 213,554 203,184 

3 312,741 322,843 322,843 307,425 

4 461,596 485,596 509,596 448,206 

5 575,105 613,046 625,046 546,630 
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xcept that we now exploit vehicles for slightly longer: RIG is pre- 

erred for levels 1–3, followed by 140/300 at level 4 and 100/225 

t level 5. 

Next, Table 11 compares optimal sales and assignment poli- 

ies for varying accident frequencies, as was done in our study 

f FC. The results are very similar to FC and consistent with the 

ase case: Myopic and RIG are generally optimal for lower de- 

and, while 140/300 and 100/225 (together with load balancing) 

re preferred when the demand is high. The optimal sales thresh- 

lds move slightly earlier with higher likelihood of accident, as this 

akes vehicles wear out faster and has an effect similar to increas- 

ng the load on the fleet. At low demand levels, the Oldest and 

ost Odometer policies, like Myopic, have the effect of concen- 

rating utilization on a portion of the available vehicles. We can 

lso see the impact of sales policies on safety: by using 100/225 

ales instead of 140/300, accidents are actually reduced between 

emand levels 4 and 5. 

Table 12 repeats the analysis of Table 7 , which varied the sever- 

ty of accidents. Again, we use the baseline accident frequency 

rom Table 11 , but run two scenarios where the coefficient of Nu- 

Acc in (B.1) is half and double, respectively, of its estimated value 

n Table 8 . The results are virtually unchanged from the baseline 

cenario in Table 11 . 

Next, we consider Case 2, in which realistic demand data (in 

his case, for mission type 2) is used to evaluate purchase, assign- 

ent and sales policies jointly. The same reactive purchase poli- 

ies from Section 4.3 were implemented. The Pareto fronts for both 

olicies are shown in Fig. 11 . For COMP, 49 out of 58 points on

he Pareto front use the Balance assignment policy, and 41 out of 
C

697 
8 use 140/300 sales; for UTIL, 24 out of 46 Pareto-optimal points 

se the Least Odometer assignment policy and 26 out of 46 use 

40/300 sales (with another 20 using RIG). This is fairly consistent 

ith the results observed for FC, where COMP behaves similarly to 

 high-demand scenario (hence the preference for Balance) while 

TIL behaves similarly to a medium/high-demand level. 

Finally, we consider the case from Section A.1 , which compares 

entralized procurement with a 6-month lead time vs. decentral- 

zed procurement with no lead time but higher purchase cost. 

able 13 reports the results of the comparison for stable demand, 

ssuming that the fleet manager has rough knowledge of the 

emand over the next six months. Just as for FC, we see that 

entralized procurement is better for all five demand levels; how- 

ver, the savings are smaller overall. This is due to the fact that 

he nonlinear behaviour of the maintenance cost (which causes 

teep increases late in vehicles’ lifetimes) is less pronounced in 

2, so it is generally less prohibitive to keep vehicles longer. 
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Fig. 11. Cost and completion rate comparison of reactive purchase policies in C2. 

Fig. 12. Comparison of centralized and decentralized purchases. 
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Fig. 13. Cost comparison of sales policies under demand levels 1–5. 
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or this reason, we make fewer purchases under decentralized 

rocurement and so the difference between purchase prices is of 

ess importance. Note that, in certain cases (low demand levels), 

ifferent models may incur identical costs, because the demand 

s so low that no new purchases are made. Overall, however, the 

eneral observation that centralized procurement is preferable, 

iven the ability to order anticipatively, is still valid. 

Fig. 12 compares the performance of centralized vs. decentral- 

zed procurement (with 50% markup for local purchases) under re- 

listic demand for C2. The same conclusions apply. 

3. Simulation results for C2, vehicle type 3 

Finally, we repeat the previous simulations for mission type 2 

nd vehicle type 3, i.e., we remain in C2 but consider a different 

ehicle type. The cost models are unchanged from Section B.1 as 

hey already considered both vehicle types. Fig. 13 reports the 

esults of Case 1; the conclusions are very similar to those in 

ection B.2 . 

Next, Table 14 compares optimal sales and assignment policies 

or varying accident frequencies, with results that are consistent 

ith both FC and the other vehicle type from C2. Myopic and 

IG are optimal for lower demand, while 140/300 and 100/225 

together with load balancing) are preferred when the demand is 

igh. Table 15 varies the accident severity and obtains virtually the 

ame results as the baseline in Table 14 . 
698 
In Case 2, Fig. 14 shows that, for COMP, 87 out of 94 Pareto- 

ptimal points use the Balance assignment policy, while 42 out of 

4 use 140/300 sales (and 37 out of 94 use RIG). For UTIL, 25 out

f 51 Pareto-optimal points use Balance assignment (and 24 out of 

1 use Least Odometer), while 25 out of 51 use 140/300 sales (and 

6 use RIG). These results are quite consistent with Section B.2 as 

ell as with the main study of FC. 

Table 16 reports the results of procurement analysis for stable 

emand, while Fig. 15 does the same for realistic demand. These 

esults are similar to those observed for FC since the same vehicle 

ype is considered in both cases. 

4. Discussion 

Overall, the results in Sections B.2 –B.3 are similar both to each 

ther and to our earlier results for FC. When vehicle type 2 is used 

 Section B.2 ), the results behave as if the demand were “lower”, i.e., 

he patterns that we typically see for demand level 1 persist for 

emand level 2, and the transition from Myopic to Least Odometer 

or from RIG to 140/300) takes place later than for FC. In general, 

2 imposes less severe penalties on operational costs for vehicles 

ate in their lifetimes, allowing us to run them longer than was the 

ase in FC. The results for type-3 vehicles tend to be in between 

he results for type 2 and the original results for FC (which also 

onsidered type-3 vehicles). 
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Table 14 

Comparison between different levels of accidents. 

Accident Level Demand Level Policies Cost NumOfAccidents 

0 1 Myopic, RIG 126,743 0 

2 Least Odometer, RIG 210,614 0 

3 Least Odometer, 140/300 337,772 0 

4 Balance, 140/300 497,793 0 

5 Balance, 100/225 594,451 0 

Baseline 1 Myopic, RIG 129,126 1.76 

2 Least Odometer, RIG 216,130 4.06 

3 Least Odometer, 140/300 343,170 3.99 

4 Balance, 140/300 507,293 7.02 

5 Balance, 100/225 602,801 6.17 

2x Baseline 1 Myopic, RIG 131,466 3.47 

2 Least Odometer, RIG 221,666 7.88 

3 Least Odometer, 140/300 348,397 7.85 

4 Balance, 140/300 516,776 14.03 

5 Balance, 100/225 611,406 12.53 

4x Baseline 1 Myopic, RIG 136,836 6.92 

2 Least Odometer, RIG 233,815 14.78 

3 Least Odometer, 140/300 359,035 15.71 

4 Newest, 100/225 535,641 19.67 

5 Balance, 100/225 627,917 24.72 

Table 15 

Cost comparison with varying accident severity. 

Accident Severity Demand Level Policies Total cost Avg. no. of accidents 

0.5x Baseline 1 Myopic, RIG 127,968 1.809 

2 Least Odometer, RIG 213,362 4.060 

3 Least Odometer, 140/300 340,471 3.988 

4 Balance, 140/300 502,519 6.982 

5 Balance, 100/225 598,661 6.221 

2x Baseline 1 Myopic, RIG 131,670 1.764 

2 Least Odometer, RIG 221,582 3.790 

3 Least Odometer, 140/300 348,536 3.978 

4 Balance, 140/300 516,329 6.846 

5 Balance, 100/225 611,043 6.129 

Fig. 14. Cost and completion rate comparison of reactive purchase policies in C2. 
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These differences illustrate the ability of our simulator to fine- 

une its recommendations to the realities of each country and lo- 

al office. However, the big-picture tendencies observed in this 

tudy do not differ from those obtained for FC in any major 

ay. 
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ppendix C. Justification of cost and demand models 

In this section, we provide additional arguments in support of 

ur chosen cost and demand models relative to certain alterna- 

ives. Section C.1 provides additional validation of the cost models 

n Sections 3.3 –3.5 . Section C.2 provides additional discussion of 

he demand model. 
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Table 16 

Comparison of costs between purchasing locally and ordering predictively 

for stable demand. 

Demand level Purchase locally Order predictively 

10% 30% 50% 

1 126,743 126,743 154,220 126,743 

2 210,614 210,614 246,337 210,614 

3 338,186 338,186 375,032 337,335 

4 509,793 533,793 552,154 496,243 

5 619,249 668,845 665,147 590,504 

Fig. 15. Comparison of centralized and decentralized purchases. 
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1. Cost models 

The statistical models in Sections 3.3 –3.5 can be validated by 

omparing against alternative specifications or model types. We 

ould like to choose the model with the best explanatory power, 

hich for a linear regression model can be measured in terms of 

 

2 . At the same time, the model must reflect certain important 

spects of the real-world problem: for example, a zero-intercept 

odel should be used for residual value, because the initial value 

f the vehicle (with age and odometer set to zero) should be equal 

o the purchase price. A model with an intercept variable will typ- 

cally appear to produce a better fit to the data, but such a model 

lso runs the risk of creating arbitrage opportunities where the 

alue of a completely new vehicle is estimated to be higher than 

he purchase price. Even if such a model happens to have lower 

quared error on the observed values, it is not useful for our pur- 

oses. 

First, as an alternative to the residual value model (8) , we con- 

ider an ordinary linear regression model without the Tobit prop- 

rty. That is, residual values of 0 in the data are treated as the 

ctual observed value of the vehicles, rather than negative values 

ensored at zero as in Section 3.3 . Table 17 presents the estimation 

esults for this model, including relevant terms for both FC and 

2. These results are quite similar to those in Tables 2 and 8 ; fur-

hermore, the R 2 value for this model is quite high (unfortunately 

n analogous quantity is not readily available for the Tobit model). 

ince there are only 108 vehicles out of 3728 in the data that had

ero value when sold, the inclusion or omission of the Tobit prop- 

rty does not significantly change the results. Potentially, one could 

se the ordinary least squares model, if one felt that the high R 2 

as a strong argument in favour. 

To demonstrate that this alternative model does not affect the 

onclusions, we tested it on Case 1 from Section 4.2 (stable de- 

and with pure replacement). Table 18 reports the simulated costs 

or various sales policies under the fuel and maintenance mod- 
700 
ls used in Sections 3.4 –3.5 . While the numbers themselves are 

lightly different from those reported in Section 4.2 , the conclu- 

ions are unchanged: the best policy is Myopic under low demand, 

ransitioning to load-balancing policies as the demand increases. 

Next, we considered a number of variations on the fuel model 

f Section 3.4 . The model (9) is relatively simple, since it is esti- 

ated separately for each country and only includes three features 

n FC (six in C2 due to the greater variety of mission and vehicle 

ypes). To provide further justification for this model, we compared 

t to several alternatives with some of these features removed or 

ransformed; for example, we considered replacing Odometer by 

og ( Odometer ) , which increases more slowly for high odometer 

alues. The R 2 values for these models are given in Table 19 . Over-

ll, the variations do not substantially change the performance of 

he model. The very last variant, in which an interaction term be- 

ween odometer and mission type is considered, slightly improves 

erformance in FC (only in the third decimal point) but not in C2; 

urthermore, in C2, the estimated coefficients of this interaction are 

ot statistically significant. Thus, there are no strong arguments in 

avour of replacing the base model. 

Similarly, we considered several variations of the maintenance 

ost model of Section 3.5 . Recall that this is a zero-intercept model 

ith a random effect representing vehicle ID. Two types of R 2 val- 

es are available for mixed-effect models: marginal R 2 , which rep- 

esents the proportion of variance explained by the fixed effects 

nly, and conditional R 2 , which represents the proportion of vari- 

nce explained by the full model. Both types of values are given 

n Table 20 for the base model as well as the variants; the first 

ariant does not apply to C2 since there is only one mission type 

n that country (thus, the variant will be identical to the base 

odel). Overall, we see that the base model has a high conditional 

 

2 (above 0.96 in both countries), and none of the variants im- 

roves on this value. Furthermore, some of the variants produce 

stimates that are unreasonable for simulation. For example, re- 

lacing odometer and squared odometer by log ( Odometer ) results 

n negative coefficients for the latter, which would imply the ob- 

iously incorrect conclusion that cumulative cost decreases with 

sage. Adding higher-degree polynomial terms is also undesirable 

ince it has the effect of producing extreme cost values for very 

mall or very large odometers. In other words, there are no strong 

rguments in favour of replacing the base model. 

2. Demand model 

The demand module of our simulator serves a somewhat dif- 

erent purpose than the cost module. When it comes to cost, the 

ain concern is realism, because we use cost as the main perfor- 

ance measure, and our conclusions about various policies depend 

n the cost calculations used to evaluate them. The demand mod- 

le, however, is designed with more flexibility in mind: one can try 

o mimic historical demand, as in Fig. 3 (a), but since the historical 

emand itself is censored, one may also be interested in settings 

here demand is higher than historical, as well as other scenarios 

f interest such as the “off-sync” configuration in Fig. 6 (a). Further- 

ore, one will not be able to evaluate assignment policies without 

 means of decomposing the observed monthly demand into indi- 

idual missions, something that our model in (7) allows. 

Having said this, we discuss here a simple alternative model 

hat does not have the full capability of the model in Section 3.2 ,

ut is useful as an illustration. As in Section 3.2 , the monthly de- 

and is generated from the trajectory of an underlying process 

 

L t ) which can be viewed as a “latent fleet size” roughly mea- 

uring the workload on the HO; that is, L t is the number of ve-

icles that we should have on hand at time t in order to com- 

lete all or most of the missions. The alternative model fixes L t to 

he historical fleet size, and generates monthly demand according 
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Table 17 

Estimation results for OLS residual value model. 

Dependent variable: 

Percentage.Depreciation 

Age 2.2146 ×10 −3 ∗∗∗

Accident 0.04511 ∗∗∗

log ( Odometer ) ×FC × Mission 2 × VehicleType3 0.04845 ∗∗∗

log ( Odometer ) ×FC × Mission 4 × VehicleType3 0.05399 ∗∗∗

log ( Odometer ) ×C2 × Mission 1 × VehicleType4 0.03546 ∗∗∗

log ( Odometer ) ×C2 × Mission 2 × VehicleType1 0.0021 

log ( Odometer ) ×C2 × Mission 2 × VehicleType2 0.0405 ∗∗∗

log ( Odometer ) ×C2 × Mission 2 × VehicleType3 0.02324 ∗∗∗

log ( Odometer ) ×C2 × Mission 3 × VehicleType4 0.03330 ∗∗∗

log ( Odometer ) ×C2 × Mission 4 × VehicleType1 0.03028 ∗∗∗

log ( Odometer ) ×C2 × Mission 4 × VehicleType2 0.05199 ∗∗∗

log ( Odometer ) ×C2 × Mission 4 × VehicleType3 0.04892 ∗∗∗

Observations 3846 

R 2 0.928 

Adjusted R 2 0.924 

Residual Std. Error 0.175 (df = 3660) 

F Statistic 252.127 ∗∗∗ (df = 186; 3660) 

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01 

Table 18 

Cost comparison for Case 1 under the OLS residual value model. 

Demand 40/100 60/150 100/225 140/300 RIG Best 

1 198,266 183,952 164,540 156,510 145,568 Myopic 

2 333,543 299,002 278,733 275,178 275ins,322 Myopic 

3 534,124 480,741 451,460 440,014 489,049 Least Odometer 

4 732,882 692,772 685,123 705,234 885ins,866 Newest 

5 879,922 830,668 816,790 892,508 1,161,100 Balance 

Table 19 

Performance comparison for several variants of the fuel cost model. 

Model Description R 2 value (FC) R 2 value (C2) 

Base model ( Section 3.4 ) 0.301 0.551 

Odometer replaced by log ( Odometer ) 0.300 0.550 

Age removed 0.298 0.548 

Adding Odometer × Mission Type 0.306 0.551 
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Fig. 16. Trajectory of monthly demand under alternative model. 
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o D t = β0 + β1 L t + ε t , where β0 = 3760 and β1 = 817 . 62 are esti-

ated using ordinary least squares regression ( R 2 = 0 . 87 ), and ε t is

enerated from a normal distribution with zero mean and variance 

roportional to L t . 

Fig. 16 presents an illustration of simulated monthly demands 

nder the alternative model compared to historical ones, as in 

ig. 3 (b). While the simulations are generally close to the histori- 

al values, both sample paths consistently overestimate demand at 

he beginning of the time horizon. The main reason is the high es- 

imated value of β0 in the alternative model; since this model does 

ot have the flexibility to generate varying numbers of individual 

asks, its output fluctuates more closely around the intercept in the 

arly stages. For the same reason, the alternative model also can- 

ot be used inside the simulator, which requires individual mis- 

ions in order to compare assignment policies. This is the primary 

otivation for the use of a compound random variable model. 
Table 20 

Comparison of R 2 values for several variants of the maintenan

Model Description Marginal (FC) 

Base model ( Section 3.5 ) 0.874 

Age × Mission Type replaced by Age 0.877 

Odometer replaced by log ( Odometer ) 0.684 

Higher power of Odometer 0.896 

701 
We close this discussion with an explanation of how the 

weedie distribution in our demand model was calibrated. As dis- 

ussed in Section 3.2 , the parameters ( λ, α, γ ) of the distribution 

an be made to depend on the value of L t , reflecting the fact 

hat, in the LIHO data, fleet size appears to be correlated with 

istance travelled. As explained in Zhang et al. (2013) , the pre- 

ise dependence can be obtained as follows. Given four parameters 

 

τ0 , τ1 , p, φ) estimated numerically from data, one calculates μ = 
ce model. 

Conditional (FC) Marginal (C2) Conditional (C2) 

0.967 0.894 0.965 

0.967 — —

0.880 0.868 0.951 

0.967 0.906 0.965 
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Table 21 

Estimated parameters of Tweedie model for various cases. 

Case τ0 τ1 p φ

Section 4.2 6.8803 0.2465 1.1608 171.0340 

Section 4.3 7.4961 -0.0199 1.2377 74.7419 

Appendix B 7.6258 -0.0116 1.3983 47.9957 
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τ0 + τ1 L t and uses this quantity to compute λ = 

μ2 −p 

φ( 2 −p ) 
, α = 

2 −p 
p−1 , 

nd γ = φ( p − 1 ) μp−1 . Table 21 provides the estimated parame- 

er values for various cases used in our study. Section 4.4 uses the 

ame Tweedie parameters as Section 4.3 for both mission types. 

ikewise, Section Appendix B uses the same Tweedie parameters 

or both vehicle types. 
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